Baohe Zhang created SPARK-35010: ----------------------------------- Summary: nestedSchemaPruning causes issue when reading hive generated Orc files Key: SPARK-35010 URL: https://issues.apache.org/jira/browse/SPARK-35010 Project: Spark Issue Type: Bug Components: SQL Affects Versions: 3.1.0, 3.0.0 Reporter: Baohe Zhang
In spark3, we have spark.sql.orc.imple=native and spark.sql.optimizer.nestedSchemaPruning.enabled=true as the default settings. And these would cause issues when query struct field of hive-generated orc files. For example, we got an error when running this query in spark3 {code:java} spark.table("testtable").filter(col("utc_date") === "20210122").select(col("open_count.d35")).show(false) {code} The error is {code:java} Caused by: java.lang.AssertionError: assertion failed: The given data schema struct<open_count:struct<d35:map<string,double>>> has less fields than the actual ORC physical schema, no idea which columns were dropped, fail to read. at scala.Predef$.assert(Predef.scala:223) at org.apache.spark.sql.execution.datasources.orc.OrcUtils$.requestedColumnIds(OrcUtils.scala:153) at org.apache.spark.sql.execution.datasources.orc.OrcFileFormat.$anonfun$buildReaderWithPartitionValues$3(OrcFileFormat.scala:180) at org.apache.spark.util.Utils$.tryWithResource(Utils.scala:2539) at org.apache.spark.sql.execution.datasources.orc.OrcFileFormat.$anonfun$buildReaderWithPartitionValues$1(OrcFileFormat.scala:178) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.org$apache$spark$sql$execution$datasources$FileScanRDD$$anon$$readCurrentFile(FileScanRDD.scala:116) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:169) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:93) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:729) at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:340) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:872) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:872) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349) at org.apache.spark.rdd.RDD.iterator(RDD.scala:313) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at org.apache.spark.scheduler.Task.run(Task.scala:127) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:446) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:449) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) {code} I think the reason is that we apply the nestedSchemaPruning to the dataSchema. [https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/SchemaPruning.scala#L75] This nestedSchemaPruning not only prunes the unused fields of the struct, it also prunes the unused columns. In my test, the dataSchema originally has 48 columns, but after nested schema pruning, the dataSchema is pruned to 1 column. This pruning result in an assertion error in [https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/orc/OrcUtils.scala#L159] because column pruning in hive generated orc files is not supported. This issue seems also related to the hive version, we use hive 1.2, and it doesn't contain field names in the physical schema. -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org