Willi Raschkowski created SPARK-35324: -----------------------------------------
Summary: Time parser policy not respected in RDD Key: SPARK-35324 URL: https://issues.apache.org/jira/browse/SPARK-35324 Project: Spark Issue Type: Task Components: Input/Output Affects Versions: 3.1.1, 3.0.2 Reporter: Willi Raschkowski When reading a CSV file, {{spark.sql.timeParserPolicy}} is respected in actions on the resulting dataframe. But it's ignored in actions on dataframe's RDD. E.g. say to parse dates in a CSV you need {{spark.sql.timeParserPolicy}} to be set to {{LEGACY}}. If you set the config, {{df.count}} will work as you'd expect. However, {{df.count.rdd}} will fail because it'll ignore the override and read the config value as {{EXCEPTION}}. For instance: {code:java|title=test.csv} date 2/6/18 {code} {code:java} scala> spark.conf.set("spark.sql.legacy.timeParserPolicy", "legacy") scala> val df = { | spark.read | .option("header", "true") | .option("dateFormat", "MM/dd/yy") | .schema("date date") | .csv("/Users/wraschkowski/Downloads/test.csv") | } df: org.apache.spark.sql.DataFrame = [date: date] scala> df.show +----------+ | date| +----------+ |2018-02-06| +----------+ scala> df.count res3: Long = 1 scala> df.rdd.count 21/05/06 00:06:18 ERROR Executor: Exception in task 0.0 in stage 4.0 (TID 4) org.apache.spark.SparkUpgradeException: You may get a different result due to the upgrading of Spark 3.0: Fail to parse '2/6/18' in the new parser. You can set spark.sql.legacy.timeParserPolicy to LEGACY to restore the behavior before Spark 3.0, or set to CORRECTED and treat it as an invalid datetime string. at org.apache.spark.sql.catalyst.util.DateTimeFormatterHelper$$anonfun$checkParsedDiff$1.applyOrElse(DateTimeFormatterHelper.scala:150) at org.apache.spark.sql.catalyst.util.DateTimeFormatterHelper$$anonfun$checkParsedDiff$1.applyOrElse(DateTimeFormatterHelper.scala:141) at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38) at org.apache.spark.sql.catalyst.util.Iso8601DateFormatter.$anonfun$parse$1(DateFormatter.scala:61) at scala.runtime.java8.JFunction0$mcI$sp.apply(JFunction0$mcI$sp.java:23) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.sql.catalyst.util.Iso8601DateFormatter.parse(DateFormatter.scala:58) at org.apache.spark.sql.catalyst.csv.UnivocityParser.$anonfun$makeConverter$21(UnivocityParser.scala:202) at org.apache.spark.sql.catalyst.csv.UnivocityParser.nullSafeDatum(UnivocityParser.scala:238) at org.apache.spark.sql.catalyst.csv.UnivocityParser.$anonfun$makeConverter$20(UnivocityParser.scala:200) at org.apache.spark.sql.catalyst.csv.UnivocityParser.org$apache$spark$sql$catalyst$csv$UnivocityParser$$convert(UnivocityParser.scala:291) at org.apache.spark.sql.catalyst.csv.UnivocityParser.$anonfun$parse$2(UnivocityParser.scala:254) at org.apache.spark.sql.catalyst.csv.UnivocityParser$.$anonfun$parseIterator$1(UnivocityParser.scala:396) at org.apache.spark.sql.catalyst.util.FailureSafeParser.parse(FailureSafeParser.scala:60) at org.apache.spark.sql.catalyst.csv.UnivocityParser$.$anonfun$parseIterator$2(UnivocityParser.scala:400) at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:484) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:490) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:93) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:173) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:93) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1866) at org.apache.spark.rdd.RDD.$anonfun$count$1(RDD.scala:1253) at org.apache.spark.rdd.RDD.$anonfun$count$1$adapted(RDD.scala:1253) at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2242) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at org.apache.spark.scheduler.Task.run(Task.scala:131) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500) at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128) at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628) at java.base/java.lang.Thread.run(Thread.java:834) Caused by: java.time.format.DateTimeParseException: Text '2/6/18' could not be parsed at index 0 at java.base/java.time.format.DateTimeFormatter.parseResolved0(DateTimeFormatter.java:2046) at java.base/java.time.format.DateTimeFormatter.parse(DateTimeFormatter.java:1874) at org.apache.spark.sql.catalyst.util.Iso8601DateFormatter.$anonfun$parse$1(DateFormatter.scala:59) ... 32 more {code} -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org