[ 
https://issues.apache.org/jira/browse/SPARK-11583?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Davies Liu resolved SPARK-11583.
--------------------------------
       Resolution: Fixed
    Fix Version/s: 1.6.0

Issue resolved by pull request 9746
[https://github.com/apache/spark/pull/9746]

> Make MapStatus use less memory uage
> -----------------------------------
>
>                 Key: SPARK-11583
>                 URL: https://issues.apache.org/jira/browse/SPARK-11583
>             Project: Spark
>          Issue Type: Improvement
>          Components: Scheduler, Spark Core
>            Reporter: Kent Yao
>             Fix For: 1.6.0
>
>
> In the resolved issue https://issues.apache.org/jira/browse/SPARK-11271, as I 
> said, using BitSet can save ≈20% memory usage compared to RoaringBitMap. 
> For a spark job contains quite a lot of tasks, 20% seems a drop in the ocean. 
> Essentially, BitSet uses long[]. For example a BitSet[200k] = long[3125].
> So if we use a HashSet[Int] to store reduceId (when non-empty blocks are 
> dense,use reduceId of empty blocks; when sparse, use non-empty ones). 
> For dense cases: if HashSet[Int](numNonEmptyBlocks).size <   
> BitSet[totalBlockNum], I use MapStatusTrackingNoEmptyBlocks
> For sparse cases: if HashSet[Int](numEmptyBlocks).size <   
> BitSet[totalBlockNum], I use MapStatusTrackingEmptyBlocks
> sparse case, 299/300 are empty
> sc.makeRDD(1 to 30000, 3000).groupBy(x=>x).top(5)
> dense case,  no block is empty
> sc.makeRDD(1 to 9000000, 3000).groupBy(x=>x).top(5)



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to