Re: [f2fs-dev] [PATCH v2] f2fs: use memcpy_{to, from}_page() where possible

2022-08-19 Thread Fabio M. De Francesco
2: remove unneeded calls to flush_dcache_page(), > and convert the kmap_atomic() in f2fs_write_inline_data(). > > fs/f2fs/inline.c | 15 --- > fs/f2fs/super.c | 11 ++- > fs/f2fs/verity.c | 10 ++ > 3 files changed, 8 insertions(+), 28 deletions(-)

Re: [f2fs-dev] [PATCH] f2fs: use memcpy_{to, from}_page() where possible

2022-08-19 Thread Fabio M. De Francesco
On Friday, August 19, 2022 12:54:50 AM CEST Eric Biggers wrote: > From: Eric Biggers > > This is simpler, and as a side effect it replaces several uses of > kmap_atomic() with its recommended replacement kmap_local_page(). > > Signed-off-by: Eric Biggers > --- > fs/f2fs/inline.c | 7 ++- >

Re: [f2fs-dev] [PATCH] f2fs: Use memcpy_page() in f2fs_copy_page()

2022-07-17 Thread Fabio M. De Francesco
On domenica 17 luglio 2022 08:55:20 CEST Christoph Hellwig wrote: > On Sat, Jul 16, 2022 at 10:43:53PM +0200, Fabio M. De Francesco wrote: > > static inline void f2fs_copy_page(struct page *src, struct page *dst) > > { > > - char *src_kaddr = kmap(src); > > -

[f2fs-dev] [PATCH] f2fs: Delete f2fs_copy_page() and replace with memcpy_page()

2022-07-17 Thread Fabio M. De Francesco
removed function. memcpy_page() avoids open coding two kmap_local_page() + one memcpy() between the two kernel virtual addresses. Suggested-by: Christoph Hellwig Suggested-by: Ira Weiny Signed-off-by: Fabio M. De Francesco --- This patch extends the scope and replaces "f2fs: Use memcpy_page

[f2fs-dev] [PATCH] f2fs: Use memcpy_page() in f2fs_copy_page()

2022-07-16 Thread Fabio M. De Francesco
might block when the mapping space is fully utilized until a slot becomes available. Therefore, replace kmap() with kmap_local_page() in f2fs_copy_page() and use memcpy_page() instead of open coding kmap_local_page() + memcpy(). Suggested-by: Ira Weiny Signed-off-by: Fabio M. De Francesco --- fs

[f2fs-dev] [SPAM] New Product : LED top view ribbon ---June 12, 2014(2)

2014-06-12 Thread M
-- HPCC Systems Open Source Big Data Platform from LexisNexis Risk Solutions Find What Matters Most in Your Big Data with HPCC Systems Open Source. Fast. Scalable. Simple. Ideal for Dirty Data. Leverages Graph Analysis for