Hi, everyone.

Let me explain what I wanted to do: First, I wanted to make a polar
plot with angles from 0 to 90. I could do it by adopting the
curvelinear grid demo ( http://goo.gl/kruXf ). And then I wanted to
present the radius in log10 scale. But setting the plot command to
semilogy or trying to set 'set_rscale('log')' all failed. Below I
pasted the code that works for radius in linear scale.

[Code]
#!/usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np

#Modified from 
http://matplotlib.sourceforge.net/plot_directive/mpl_toolkits/axes_grid/examples/demo_floating_axis.py

#def curvelinear_test2(fig, lp_r, lp_t):
def curvelinear_test2(fig, lp_t, lp_r, rLower, rUpper):
    rmin = np.min(lp_r)
    rmax = np.max(lp_r)
    print 'rm: ', rmin, 'rM: ', rmax,'rL: ', rLower, 'rU: ', rUpper
    """
    polar projection, but in a rectangular box.
    """
    global ax1
    import  mpl_toolkits.axisartist.angle_helper as angle_helper
    from matplotlib.projections import PolarAxes
    from matplotlib.transforms import Affine2D

    from mpl_toolkits.axisartist import SubplotHost, ParasiteAxesAuxTrans

    from mpl_toolkits.axisartist import GridHelperCurveLinear

    from  mpl_toolkits.axisartist.grid_helper_curvelinear import
GridHelperCurveLinear


    # see demo_curvelinear_grid.py for details
    tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

    extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
                                                     lon_cycle = 360,
                                                     lat_cycle = None,
                                                     lon_minmax = (0, 360),
                                                     lat_minmax =
(-np.inf, np.inf),
                                                     #lat_minmax =
(rmin, np.inf),
                                                     )

    grid_locator1 = angle_helper.LocatorDMS(12)

    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1
                                        )


    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    fig.add_subplot(ax1)

    # make ticklabels of all axis visible.
    ax1.axis[:].major_ticklabels.set_visible(True)
    #ax1.axis["top"].major_ticklabels.set_visible(True)
    #ax1.axis["left"].major_ticklabels.set_visible(True)
    #ax1.axis["bottom"].major_ticklabels.set_visible(True)

    # show angle (0) at right and top
    ax1.axis["right"].get_helper().nth_coord_ticks=0
    ax1.axis["top"].get_helper().nth_coord_ticks=0

    # show radius (1) at left and bottom
    ax1.axis["left"].get_helper().nth_coord_ticks=1
    ax1.axis["bottom"].get_helper().nth_coord_ticks=1

    # set labels
    ax1.axis["left"].label.set_text(r'ylabel')
    ax1.axis["bottom"].label.set_text(r'xlabel')
    ax1.axis["bottom"].major_ticklabels.set_rotation(-30)

    ax1.set_aspect(1.)
    ax1.set_xlim(rLower, rUpper)
    ax1.set_ylim(rLower, rUpper)
    #ax1.rscale('log')

    # A parasite axes with given transform
    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    # note that ax2.transData == tr + ax1.transData
    # Anthing you draw in ax2 will match the ticks and grids of ax1.
    ax1.parasites.append(ax2)

    ax2.plot(lp_t, lp_r, 'o-')
    #ax2.semilogy(lp_t, lp_r, 'o-')
    #ax2.set_rscale('log')
    #ax1.set_xscale('log')
    #ax1.set_yscale('log')

    ax1.grid(True)

if __name__ == "__main__":

   fig = plt.figure(1, figsize=(5, 5))
   fig.clf()

   rmin = 1e-1
   rmax = 1e2
   lp_t = np.linspace(0., 90., 5)
   lp_r = np.linspace(rmin, rmax/10, 5)*5

   print "lp_t: ", lp_t
   print "lp_r: ", lp_r
   print "log10(lp_r): ", np.log10(lp_r)

   curvelinear_test2(fig, lp_t, lp_r, rmin, rmax)
   #curvelinear_test2(fig, lp_t, np.log10(lp_r), np.log10(rmin), np.log(rmax))

   plt.show()

[/Code]

I'm using Enthought Python Distribution Version: 7.0-2 (32-bit) Python
2.7.1 on win32
and matplotlib.__version__ is '1.0.1'.

Thanks,
Junghun Shin
--
Division of Electrical, Electronic and Information Engineering,
Graduate School of Engineering, Osaka University,
2-6 Yamada-oka, Suita-shi, Osaka, 565-0871, JAPAN
Tel / Fax: +81-6-6879-8755
E-mail: jhs...@ef.eie.eng.osaka-u.ac.jp
Group Homepage: http://www.eie.eng.osaka-u.ac.jp/ef/

------------------------------------------------------------------------------
Benefiting from Server Virtualization: Beyond Initial Workload 
Consolidation -- Increasing the use of server virtualization is a top
priority.Virtualization can reduce costs, simplify management, and improve 
application availability and disaster protection. Learn more about boosting 
the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to