I've started with a data file consisting of one number per line, wide distribution of values. I've created a histogram out of it, showing the frequency of occurrence of values in about 200 bins. Even managed to do a log xscale.
############################# import matplotlib.pyplot as plt import numpy as np with open('out-sorted.txt') as f: data = map(int, f) f.close() MIN = min(data) MAX = max(data) BINS = 200 n, bins, patches = plt.hist(data, bins = 10 ** np.linspace(np.log10(MIN), np.log10(MAX), BINS)) plt.gca().set_xscale("log") plt.xlabel('latency (ms)') plt.ylabel('number of occurences') plt.show() ############################# This is the result: http://i.imgur.com/e4hb3Tw.png The problem is, this is an aggregate of values over a large time interval. I would like to add another dimension to the histogram - timestamp, showing how this histogram varies in time. The frequency shall remain on the vertical axis; timestamp and the actual value shall be the 2 horizontal axes. I could generate another data file, with each value prefixed with a timestamp in the format %Y-%m-%d-%H-00-00 (already truncated to the hour). For all values sharing the same timestamp, I want to do a histogram, and then repeat the process on the timestamp axis. The value axis must be logarithmic, just like in the example shown above. Any ideas? I'm new to Matplotlib and I'm not sure where to begin. -- Florin Andrei http://florin.myip.org/ ------------------------------------------------------------------------------ Slashdot TV. Video for Nerds. Stuff that Matters. http://pubads.g.doubleclick.net/gampad/clk?id=160591471&iu=/4140/ostg.clktrk _______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users