Só o item (a). Acredito que as curvas são ortogonais na
intersecção. Neste item temos as seguintes curvas:
2x^2+y^2=3
e
x=y^2
cuja intersecção ocorre nos pontos (1, 1) e (1, -1). As derivadas são
2x.x'+y.y'=0
e
x'=2y.y'
No ponto (1, 1) temos
curva 1: 2x'+y'=0 => y'=-
Não entendi a notação.
Citando Yuri Heinrich <[EMAIL PROTECTED]>:
05. Em cada item seguinte são apresentadas duas curvas. Mostre que estas
curvas são ortogonais:
a) 2*x^*2+*y^*2=3 e *x*=*y^*2
b) *x^*2−*y^*2=5 e 4*x^*2+9*y^*2=72
*
Nota: Para que duas curvas sejam ortogonais, suas tangentes
05. Em cada item seguinte são apresentadas duas curvas. Mostre que estas
curvas são ortogonais:
a) 2*x^*2+*y^*2=3 e *x*=*y^*2
b) *x^*2−*y^*2=5 e 4*x^*2+9*y^*2=72
*
Nota: Para que duas curvas sejam ortogonais, suas tangentes devem ser
ortogonais. Se duas
retas* : *y1 *=*m1.**x*+*b e **y2 *=*m2.**
Olá Pessoal,
Alguém sabe se a equação diofantina xn + yn = z2 possui soluções inteiras para
qqer n natural ?
Abs
Felipe
Novos endereços, o Yahoo! que você conhece. Crie um email novo com a sua
cara @ymail.com ou @rocketmail.com.
http://br.new.mail.yahoo.com/addresses
Pessoal,
Seguem três problemas para diversão.
1) Dada uma parábola com foco em (0,P), traça-se uma reta r, perpendicular a
parábola num ponto A, e que a intercepta em outro ponto B, de tal forma que
APB=90. Determinar a medida dos segmentos AP e BP em função de P (este ainda
não fiz).
O propblema, da forma que propus pode parecer aberto a todas as ferramentas
de álgebra que conhecemos, mas da lista que tirei só podíamos resolver
usando algumas propriedades bem restritas, mas, mesmo assim acho que ficou
legal!
Essa questão se encontra no Cap. 0 do livro do Munem.
Abraços !
Quem t
6 matches
Mail list logo