Re: [obm-l] algebra

2019-02-15 Por tôpico Matheus Secco
Oi, Ralph, aproveitando a sua ideia, veja que ele pede abc-1 e multiplicando as suas equações, você tira abc rapidinho. Abraços Em sáb, 16 de fev de 2019 01:26, Ralph Teixeira Tome a=x+1, b=y+1 e c=z+1. > > As equacoes equivalem a: > > ab=9 > bc=16 > ac=36 > > que nao sao dificeis de resolver

Re: [obm-l] algebra

2019-02-15 Por tôpico Ralph Teixeira
Tome a=x+1, b=y+1 e c=z+1. As equacoes equivalem a: ab=9 bc=16 ac=36 que nao sao dificeis de resolver -- multiplique duas delas, divida pela outra, use que a,b,c>0 Fica a=9/2; b=2; c=8. Entao x=7/2; y=1 e z=7, e daqui voce tira o que precisar. Abraco, Ralph. On Fri, Feb 15, 2019 at

Re: [obm-l] algebra

2019-02-15 Por tôpico Daniel Jelin
Deve haver um jeito mais elegante, mas dá pra fazer por substituição: (1) x=(8-y)/(1+y) (2) y=(15-z)/(1+z) (3) z=(35-x)/(1+x) (4) Com (1) e (3), achamos z=3+4y (5) De volta a y + z + yz = 15, e sabendo que y é positivo, achamos y = 1 (6) Então z = 7 e x = 7/2 (7) Então xyz + x + y + z = 49/2 +

[obm-l] algebra

2019-02-15 Por tôpico marcone augusto araújo borges
assuma que x, y, z são numeros positivos tais que satisfazem as equações abaixo . Determine o valor de xyz + x+y+z x+y+xy = 8 y+z+yz = 15 z+x+ zx = 35 Eu encontrei xyz + x+y+z + xy +xz + yz = 71, mas... o gabarito diz que a resposta é 36 -- Esta mensagem foi verificada pelo sistema de

[obm-l] Re: [obm-l] Sequência de Fibonacci

2019-02-15 Por tôpico Claudio Buffara
Eu me interesso mais em saber como estes resultados são descobertos. Ou pelo menos, como poderiam, a princípio, ser descobertos por alguém com conhecimentos básicos de matemática escolar (por exemplo, PAs, PGs e equações do 2o grau) e alguma iniciativa. Por exemplo, PA s e PGs (talvez os exemplos

[obm-l] Re: [obm-l] Sequência de Fibonacci

2019-02-15 Por tôpico Julio César Saldaña Pumarica
Tal vez isto seja indução, mas vou compartilhar mesmo assim: Defina: A_m = F_2m •F_m-1 - F_2m-1•F_m .(1) Defina: B_m = (-1)^m x A_m ...(2) Calculando B_(m+1)-B_(m-1) e com um pouco de suor obtemos B_(m+1)-B_(m-1)=B_m, ouseja, B_m segue a regra de Fibonacci, além de mais B_1=F_1,

[obm-l] Re: [obm-l] Re: [obm-l] Recorrência de 2ª Ordem

2019-02-15 Por tôpico Esdras Muniz
Suponha que a equação seja Xn+2=2aXn+1-a^2Xn, então, (Xn+2-aXn+1)=a(Xn+1-aXn). Defina Yn=Xn+1-aXn. Daí, Yn+1=aYn, então fica Yn=B.a^n. Xn+1=aXn+B.a^n. Que é uma equação de primeira ordem. Em sex, 15 de fev de 2019 00:11, Claudio Buffara Pelo método experimental. > > Suponhamos que você já