Não entendi como uma homotetia poderia reduzir um par ordenado a um único
número... enfim...

O que se faz, no caso da relação de equivalência que descrevi, é
representar o par (a,b) pela notação a-b.
Daí, (a,b) e (c,d) são equivalentes sss a-b = c-d.
E a novidade são os números negativos: as classes de equivalência de pares
(a,b) com a < b, representadas, por exemplo, pelo par (0,c), onde c = b-a.
Ou, na notação usual, -c.

Mas não acho que se deva perder muito tempo com a construção de sistemas
numéricos via classes de equivalência, estendendo naturais para inteiros
para racionais para reais e para complexos.  Até porque é extremamente
sacal, a cada etapa, checar que as operações usuais (+ e *), quando
aplicadas aos novos números, têm todas as propriedades que conhecemos da
escola.
Essas construções foram a maneira que os matemáticos acharam pra formalizar
os sistemas numéricos, a partir de conceitos mais básicos (no caso, pares
ordenados e relações de equivalência) - é o programa do Hilbert (ou de
Russell e Whitehead), de reduzir toda a matemática à teoria dos conjuntos.
Mas, no fundo, esta é uma construção artificial, ex post.  Pois matemáticos
já usavam todos os números muito antes dessa formalização ser inventada.
E não acho que ela renda muitos frutos, nem pedagógicos (a menos que seu
objetivo seja "entender sem compreender") e nem pra ampliação da fronteira
do conhecimento, exceto colocar os sistemas numéricos numa base axiomática
sólida.
Em particular, no que diz respeito aos números reais, a única coisa que
interessa é que eles são um corpo ordenado completo. Tanto é que vários
livros de análise partem deste axioma e não se preocupam em construir os
reais a partir dos naturais.

[]s,
Claudio.



On Tue, Nov 15, 2022 at 5:07 PM Pedro José <petroc...@gmail.com> wrote:

> Obrigado a você e ao Cláudio. Mas não sou criativo para inventar. Mas já
> vi que terei que fazer uma homotetia, para as classes de equivalência para
> representar só como um número e não como um par, creio eu.
>
> Cordialmente,
> PJMS
>
> Em ter., 15 de nov. de 2022 às 16:00, Anderson Torres <
> torres.anderson...@gmail.com> escreveu:
>
>>
>>
>> Em ter, 15 de nov de 2022 14:33, Pedro José <petroc...@gmail.com>
>> escreveu:
>>
>>> Boa tarde!
>>> Para os |Naturais, temos os postulados de Peano.
>>>
>>> Para os Inteiros há alguma formalização?
>>>
>>
>> invente uma!
>>
>> Pode ser por exemplo o conjunto de pares (p,q) tais que p-q é constante.
>>
>> ou melhor (p1,q1)=(p2,q2) se e só se p1+q2=p2+q1.
>>
>>
>>> Acho pobre dizer que é necessário ter outros números devido ao problema
>>> de fechamento nos naturais para a subtração que é fato e daí introduzir os
>>> simétricos que são inteiros e ainda não foram caracterizados.
>>>
>>> No meu antigo ginásio aprendi que os Reais era a união dos conjuntos
>>> disjuntos irracionais e racionais. Os racionais haviam sido bem definidos.
>>> Aí questionei e o que são irracionais? resposta: são os Reais que não são
>>> racionais, os que não podem ser escritos na forma p/q p e q inteiros e
>>> q<>0. Mas me deram um tombo. Definiram os |Reais com base nos irracionais e
>>> os irracionais com base nos |Reais. 3 +2i também não pode ser inscrito na
>>> forma p/q. Só mais tarde no científico, é que meu professor definiu
>>> irracional como um número que não podia ser escrito na forma p/q e cuja
>>> representação decimal tinha uma infinidade de algarismos, sem haver uma
>>> periodicidade.
>>> Na época foi o maior nó que tive com a matemática. O mestre demonstrou
>>> que os racionais eram densos, mas entre eles ainda cabiam os irracionais.
>>> Não satisfeito mostrou que os racionais eram enumeráveis e por absurdo
>>> mostrou que os |Reais não. Não satisfeito mostrou que a cardinalidade do
>>> intervalo [0,1] era maior que a dos |Naturais. Não conseguia conceber que
>>> havia um infinito maior que outro. Outra coisa que demorei a aceitar,mesmo
>>> vendo a bijeção, era que os inteiros e naturais tinham a mesma
>>> cardinalidade. Na minha cabeça, os inteiros têm todos os naturais ainda
>>> sobram os negativos, como é igual?
>>> Hoje, depois de velho, arrumei uma enteada, que muito me pergunta e
>>> estou enrolado. Para dar um ar de superioridade, questionei se conhecia os
>>> inteiros de Gaus, que 5 não era primo nos inteiros de Gaus. Estrepei-me, a
>>> danada foi pesquisar e me questiona sobre o que não tenho um domínio pleno.
>>> Em suma, como apresentei a ela os postulados de Peano para a
>>> caracterização dos Naturais, ela me cobra por algo semelhante para os
>>> Inteiros, e não sei responder.
>>> HELP! SOCORRO! AU SECOURS! AYUDA! AIUTO! HILFE!
>>> Cordialmente,
>>> PJMS
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a