Pois bem, se voce parametrizar com relacao ao centro, teria
x(teta)=1+cos(teta) e y(teta)=sin(teta). Se fosse assim, teria que ser
0 wrote:
> Caro Ralf, obrigado pela resposta.Para mim ficou confuso pq pensei que a
> parametrização do círculo se daria colocando como referencia o novo centro
> do m
Caro Ralf, obrigado pela resposta.Para mim ficou confuso pq pensei que a
parametrização do círculo se daria colocando como referencia o novo centro
do mesmo. Quando penso em circulos diferentes , por exemplo residindo em
apenas um quadrante tenho dificuldade de imaginar varrendo todos os pontos
. V
Boa tarde,
Esse intervalo é arbitrário e pode ser definido para cada problema.
Nessa questão está descrevendo uma curva nesse intervalo.
Em Seg, 2 de set de 2019 16:55, Gabriel Lopes
escreveu:
> Boa tarde, tenho uma duvida básica da representação em equação polar do
> círculo (x-1)^2 +y^2= 1.
Bom, vale a pena fazer uma figura primeiro... Fez? Note como este circulo
estah nos primeiro e quarto quadrantes apenas.
Entao suponho que voce fez as contas e descobriu que r=2cos(teta). No
quarto quadrante vale -pi/2=0 sempre. Neste caso, fica claro que
pi/2 wrote:
> Boa tarde, tenho uma duvida
4 matches
Mail list logo