AIL PROTECTED] [mailto:[EMAIL PROTECTED]Em nome de
Luiz H. BarbosaEnviada em: sexta-feira, 4 de novembro de 2005
11:52Para: obm-lAssunto: Re:[obm-l] matrizes
(olimpiada)
Assunto: [obm-l] matrizes (olimpiada)
essa eh de uma olimpiada, esta na lista que o meu professor passou...
Title: Re: [obm-l] matrizes (olimpiada)
AB = A ==> B(AB) = BA ==> (BA)B = BA ==> B^2 = B (pois BA = B)
Analogamente voce conclui que A^2 = A. Logo...
on 04.11.05 16:24, Aldo Munhoz at [EMAIL PROTECTED] wrote:
Claudio, não entendi como vc concluiu que A^2 + B^2 = A + B
Pode explic
Assunto: [obm-l] matrizes (olimpiada)
essa eh de uma olimpiada, esta na lista que o meu professor passou...
AxB=A and BxA= B, A^2+B^2=?
obrigado pela ajuda
=
Será que é de olimpíada mesmo? Mas vou ajuda-lo a fazer o dever de casa com uma dica,
A^-1 x A = A x A^-1 = I .Tenta
Title: Re: [obm-l] matrizes (olimpiada)
Voce soh pode fazer isso se souber de antemao que A e B sao invertiveis.
Por exemplo, A = B = matriz nula ==> AB = A e BA = B, mas A^2 + B^2 <> 2I.
Sem maiores informacoes, acho que o maximo que dah pra concluir eh que A^2 + B^2 = A + B.
[]s
AxB=A => A^(-1)xAxB=A^(-1)xA => B=I => B^2=I
BxA=B => B^(-1)xBxA=B^(-1)xB => A=I => A^2=I
Logo A^2+B^2=2I
Marcelo de Oliveira Andrade wrote:
essa eh de uma olimpiada, esta na lista que o meu
professor passou...
AxB=A and BxA= B, A^2+B^2=?
obrigado pela ajuda
essa eh de uma olimpiada, esta na lista que o meu professor passou...
AxB=A and BxA= B, A^2+B^2=?
obrigado pela ajuda
_
Chegou o que faltava: MSN Acesso Grátis. Instale Já!
http://www.msn.com.br/discador
6 matches
Mail list logo