530931e8
R.E. Boss
> -Original Message-
> From: programming-boun...@forums.jsoftware.com [mailto:programming-
> boun...@forums.jsoftware.com] On Behalf Of Mike Day
> Sent: donderdag 15 januari 2015 16:39
> To: programm...@jsoftware.com
> Subject: Re: [Jprogramming] Kol
ory.
> See http://arxiv.org/abs/1110.4228
>
>
> R.E. Boss
>
>
>> -Original Message-
>> From: programming-boun...@forums.jsoftware.com [mailto:programming-
>> boun...@forums.jsoftware.com] On Behalf Of Raul Miller
>> Sent: donderdag 15 januari 2015 15:0
i 2015 15:04
> To: Programming forum
> Subject: Re: [Jprogramming] Kolakosky sequence
>
> Hmm... the way that seems obvious to me seems to be less efficient
> than your approach:
>
>kolakosky=: (# 2 1 $~ #)@]^:(> #)^:_&2
>timespacex 'kolakosky 21717700'
&
great minds
> -Original Message-
> From: programming-boun...@forums.jsoftware.com [mailto:programming-
> boun...@forums.jsoftware.com] On Behalf Of Aai
> Sent: donderdag 15 januari 2015 15:07
> To: programm...@jsoftware.com
> Subject: Re: [Jprogramming]
Plagiarising Raul and Aai's brilliant insights (and presumably RE Boss's),
as I got nowhere near those efficiencies, it seems you can get a slight
improvement in time and space using a boolean array until termination:
1 ts'#(>:# ((1 0$~#)))^:(40) 1 '
1.62761 4.69765e8
1 ts'(# 2 1$~#)^
Probably identical to what you have:
(# 2 1$~#)^:(40) 2
R.E. Boss schreef op 15-01-15 om 13:03:
K=. 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 1 2 2 1
2 2 1 1 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 1 2 2
1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1
Hmm... the way that seems obvious to me seems to be less efficient
than your approach:
kolakosky=: (# 2 1 $~ #)@]^:(> #)^:_&2
timespacex 'kolakosky 21717700'
0.933105 1.16183e9
Interestingly, the length of the seed sequence seems to have a
disproportionate effect on the amount of space used
K=. 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 1 2 2 1
2 2 1 1 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 1 2 2
1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2 2 1 1
is the start of a sequence where each i-th number gives the length of