typing.Annotated could be used to build dataclasses. Using Annotated will allow libraries to add functionality to a dataclass without having to change dataclass creation or behavior. The example below shows how a dataclass could be implemented. It continues the example of struct2 shown in pep593. From a dataclass point of view, the Sample and AnnotatedSample would be equivalent.
```python @dataclass class Sample: a: int b: int c: int = field(default=5) d: int = 10 e: int = field(default=10) @packed @dataclass class AnnotatedSample: a: Annotated[int, ctype("I")] b: int c: Annotated[int, field(default=5), ctype("I")] d: Annotated[int, ctype("h")] = 10 e: Annotated[int, ctype("h")] = field(default=10) out_bytes = struct2.pack(AnnotatedSample()) ``` When parsing the Annotated parameters, the dataclass decorator will only look at the type parameter and ```field``` parameter if present. If not Annotated, it falls back to existing behavior. Let me know what you think. Thanks! _______________________________________________ Python-ideas mailing list -- python-ideas@python.org To unsubscribe send an email to python-ideas-le...@python.org https://mail.python.org/mailman3/lists/python-ideas.python.org/ Message archived at https://mail.python.org/archives/list/python-ideas@python.org/message/TI4ZHEJSP5NWPO4NHR2EKNZQYLZMGR2J/ Code of Conduct: http://python.org/psf/codeofconduct/