typing.Annotated could be used to build dataclasses. Using Annotated will allow 
libraries to add functionality to a dataclass without having to change 
dataclass creation or behavior. The example below shows how a dataclass could 
be implemented. It continues the example of struct2 shown in pep593. From a 
dataclass point of view, the Sample and AnnotatedSample would be equivalent.

```python
@dataclass
class Sample:
    a: int
    b: int
    c: int = field(default=5)
    d: int = 10
    e: int = field(default=10)


@packed
@dataclass
class AnnotatedSample:
    a: Annotated[int, ctype("I")]
    b: int
    c: Annotated[int, field(default=5), ctype("I")]
    d: Annotated[int, ctype("h")] = 10
    e: Annotated[int, ctype("h")] = field(default=10)

out_bytes = struct2.pack(AnnotatedSample())
```
When parsing the Annotated parameters, the dataclass decorator will only look 
at the type parameter and ```field``` parameter if present. If not Annotated, 
it falls back to existing behavior.

Let me know what you think. 
Thanks!
_______________________________________________
Python-ideas mailing list -- python-ideas@python.org
To unsubscribe send an email to python-ideas-le...@python.org
https://mail.python.org/mailman3/lists/python-ideas.python.org/
Message archived at 
https://mail.python.org/archives/list/python-ideas@python.org/message/TI4ZHEJSP5NWPO4NHR2EKNZQYLZMGR2J/
Code of Conduct: http://python.org/psf/codeofconduct/

Reply via email to