From: Michael Rolnik <mrol...@gmail.com> From: Richard Henderson <r...@twiddle.net>
Signed-off-by: Richard Henderson <r...@twiddle.net> --- target/avr/translate-inst.c | 298 ++++++++++++++++++++++---------------------- target/avr/translate-inst.h | 194 ++++++++++++++-------------- target/avr/translate.c | 16 +-- target/avr/translate.h | 11 +- 4 files changed, 257 insertions(+), 262 deletions(-) diff --git a/target/avr/translate-inst.c b/target/avr/translate-inst.c index 6ed98bb1ac..377263a0d3 100644 --- a/target/avr/translate-inst.c +++ b/target/avr/translate-inst.c @@ -109,9 +109,9 @@ static void gen_ZNSf(TCGv R) tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ } -static void gen_push_ret(CPUAVRState *env, int ret) +static void gen_push_ret(DisasContext *ctx, int ret) { - if (avr_feature(env, AVR_FEATURE_1_BYTE_PC)) { + if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { TCGv t0 = tcg_const_i32((ret & 0x0000ff)); @@ -119,7 +119,7 @@ static void gen_push_ret(CPUAVRState *env, int ret) tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); tcg_temp_free_i32(t0); - } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { + } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { TCGv t0 = tcg_const_i32((ret & 0x00ffff)); @@ -129,7 +129,7 @@ static void gen_push_ret(CPUAVRState *env, int ret) tcg_temp_free_i32(t0); - } else if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { + } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { TCGv lo = tcg_const_i32((ret & 0x0000ff)); TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8); @@ -144,20 +144,20 @@ static void gen_push_ret(CPUAVRState *env, int ret) } } -static void gen_pop_ret(CPUAVRState *env, TCGv ret) +static void gen_pop_ret(DisasContext *ctx, TCGv ret) { - if (avr_feature(env, AVR_FEATURE_1_BYTE_PC)) { + if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB); - } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { + } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW); tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); - } else if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { + } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { TCGv lo = tcg_temp_new_i32(); TCGv hi = tcg_temp_new_i32(); @@ -249,7 +249,7 @@ static TCGv gen_get_zaddr(void) * Adds two registers and the contents of the C Flag and places the result in * the destination register Rd. */ -int avr_translate_ADC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ADC(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[ADC_Rd(opcode)]; TCGv Rr = cpu_r[ADC_Rr(opcode)]; @@ -276,7 +276,7 @@ int avr_translate_ADC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Adds two registers without the C Flag and places the result in the * destination register Rd. */ -int avr_translate_ADD(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ADD(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[ADD_Rd(opcode)]; TCGv Rr = cpu_r[ADD_Rr(opcode)]; @@ -305,9 +305,9 @@ int avr_translate_ADD(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * instruction is not available in all devices. Refer to the device specific * instruction set summary. */ -int avr_translate_ADIW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ADIW(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_ADIW_SBIW) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -355,7 +355,7 @@ int avr_translate_ADIW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Performs the logical AND between the contents of register Rd and register * Rr and places the result in the destination register Rd. */ -int avr_translate_AND(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_AND(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[AND_Rd(opcode)]; TCGv Rr = cpu_r[AND_Rr(opcode)]; @@ -384,7 +384,7 @@ int avr_translate_AND(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Performs the logical AND between the contents of register Rd and a constant * and places the result in the destination register Rd. */ -int avr_translate_ANDI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ANDI(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[16 + ANDI_Rd(opcode)]; int Imm = (ANDI_Imm(opcode)); @@ -404,7 +404,7 @@ int avr_translate_ANDI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * signed value by two without changing its sign. The Carry Flag can be used to * round the result. */ -int avr_translate_ASR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ASR(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[ASR_Rd(opcode)]; TCGv t1 = tcg_temp_new_i32(); @@ -435,7 +435,7 @@ int avr_translate_ASR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* * Clears a single Flag in SREG. */ -int avr_translate_BCLR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_BCLR(DisasContext *ctx, uint32_t opcode) { switch (BCLR_Bit(opcode)) { case 0x00: @@ -470,7 +470,7 @@ int avr_translate_BCLR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* * Copies the T Flag in the SREG (Status Register) to bit b in register Rd. */ -int avr_translate_BLD(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_BLD(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[BLD_Rd(opcode)]; TCGv t1 = tcg_temp_new_i32(); @@ -491,7 +491,7 @@ int avr_translate_BLD(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * parameter k is the offset from PC and is represented in two's complement * form. */ -int avr_translate_BRBC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_BRBC(DisasContext *ctx, uint32_t opcode) { TCGLabel *taken = gen_new_label(); int Imm = sextract32(BRBC_Imm(opcode), 0, 7); @@ -523,9 +523,9 @@ int avr_translate_BRBC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) break; } - gen_goto_tb(env, ctx, 1, ctx->inst[0].npc); + gen_goto_tb(ctx, 1, ctx->inst[0].npc); gen_set_label(taken); - gen_goto_tb(env, ctx, 0, ctx->inst[0].npc + Imm); + gen_goto_tb(ctx, 0, ctx->inst[0].npc + Imm); return BS_BRANCH; } @@ -536,7 +536,7 @@ int avr_translate_BRBC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k * is the offset from PC and is represented in two's complement form. */ -int avr_translate_BRBS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_BRBS(DisasContext *ctx, uint32_t opcode) { TCGLabel *taken = gen_new_label(); int Imm = sextract32(BRBS_Imm(opcode), 0, 7); @@ -568,9 +568,9 @@ int avr_translate_BRBS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) break; } - gen_goto_tb(env, ctx, 1, ctx->inst[0].npc); + gen_goto_tb(ctx, 1, ctx->inst[0].npc); gen_set_label(taken); - gen_goto_tb(env, ctx, 0, ctx->inst[0].npc + Imm); + gen_goto_tb(ctx, 0, ctx->inst[0].npc + Imm); return BS_BRANCH; } @@ -578,7 +578,7 @@ int avr_translate_BRBS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* * Sets a single Flag or bit in SREG. */ -int avr_translate_BSET(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_BSET(DisasContext *ctx, uint32_t opcode) { switch (BSET_Bit(opcode)) { case 0x00: @@ -620,9 +620,9 @@ int avr_translate_BSET(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * is not available in all devices. Refer to the device specific instruction * set summary. */ -int avr_translate_BREAK(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_BREAK(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_BREAK) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_BREAK) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -635,7 +635,7 @@ int avr_translate_BREAK(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* * Stores bit b from Rd to the T Flag in SREG (Status Register). */ -int avr_translate_BST(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_BST(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[BST_Rd(opcode)]; @@ -652,9 +652,9 @@ int avr_translate_BST(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * CALL. This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ -int avr_translate_CALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_CALL(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_JMP_CALL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -663,9 +663,8 @@ int avr_translate_CALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) int Imm = CALL_Imm(opcode); int ret = ctx->inst[0].npc; - gen_push_ret(env, ret); - - gen_goto_tb(env, ctx, 0, Imm); + gen_push_ret(ctx, ret); + gen_goto_tb(ctx, 0, Imm); return BS_BRANCH; } @@ -674,7 +673,7 @@ int avr_translate_CALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Clears a specified bit in an I/O Register. This instruction operates on * the lower 32 I/O Registers -- addresses 0-31. */ -int avr_translate_CBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_CBI(DisasContext *ctx, uint32_t opcode) { TCGv data = tcg_temp_new_i32(); TCGv port = tcg_const_i32(CBI_Imm(opcode)); @@ -694,7 +693,7 @@ int avr_translate_CBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * between the contents of register Rd and the complement of the constant mask * K. The result will be placed in register Rd. */ -int avr_translate_COM(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_COM(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[COM_Rd(opcode)]; TCGv R = tcg_temp_new_i32(); @@ -715,7 +714,7 @@ int avr_translate_COM(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * None of the registers are changed. All conditional branches can be used * after this instruction. */ -int avr_translate_CP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_CP(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[CP_Rd(opcode)]; TCGv Rr = cpu_r[CP_Rr(opcode)]; @@ -739,7 +738,7 @@ int avr_translate_CP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * also takes into account the previous carry. None of the registers are * changed. All conditional branches can be used after this instruction. */ -int avr_translate_CPC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_CPC(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[CPC_Rd(opcode)]; TCGv Rr = cpu_r[CPC_Rr(opcode)]; @@ -769,7 +768,7 @@ int avr_translate_CPC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * The register is not changed. All conditional branches can be used after this * instruction. */ -int avr_translate_CPI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_CPI(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[16 + CPI_Rd(opcode)]; int Imm = CPI_Imm(opcode); @@ -794,7 +793,7 @@ int avr_translate_CPI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction performs a compare between two registers Rd and Rr, and * skips the next instruction if Rd = Rr. */ -int avr_translate_CPSE(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_CPSE(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[CPSE_Rd(opcode)]; TCGv Rr = cpu_r[CPSE_Rr(opcode)]; @@ -818,7 +817,7 @@ int avr_translate_CPSE(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * BREQ and BRNE branches can be expected to perform consistently. When * operating on two's complement values, all signed branches are available. */ -int avr_translate_DEC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_DEC(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[DEC_Rd(opcode)]; @@ -852,10 +851,10 @@ int avr_translate_DEC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * affect the result in the final ciphertext or plaintext, but reduces * execution time. */ -int avr_translate_DES(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_DES(DisasContext *ctx, uint32_t opcode) { /* TODO: */ - if (avr_feature(env, AVR_FEATURE_DES) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_DES) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -872,9 +871,9 @@ int avr_translate_DES(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * during EICALL. This instruction is not available in all devices. Refer to * the device specific instruction set summary. */ -int avr_translate_EICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_EICALL(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_EIJMP_EICALL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -882,7 +881,7 @@ int avr_translate_EICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) int ret = ctx->inst[0].npc; - gen_push_ret(env, ret); + gen_push_ret(ctx, ret); gen_jmp_ez(); @@ -896,9 +895,9 @@ int avr_translate_EICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * memory space. See also IJMP. This instruction is not available in all * devices. Refer to the device specific instruction set summary. */ -int avr_translate_EIJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_EIJMP(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_EIJMP_EICALL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -925,9 +924,9 @@ int avr_translate_EIJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * instruction is not available in all devices. Refer to the device specific * instruction set summary. */ -int avr_translate_ELPM1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ELPM1(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_ELPM) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -943,9 +942,9 @@ int avr_translate_ELPM1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_ELPM2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ELPM2(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_ELPM) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -961,9 +960,9 @@ int avr_translate_ELPM2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_ELPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ELPMX(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_ELPMX) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_ELPMX) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -987,7 +986,7 @@ int avr_translate_ELPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Performs the logical EOR between the contents of register Rd and * register Rr and places the result in the destination register Rd. */ -int avr_translate_EOR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_EOR(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[EOR_Rd(opcode)]; TCGv Rr = cpu_r[EOR_Rr(opcode)]; @@ -1004,9 +1003,9 @@ int avr_translate_EOR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction performs 8-bit x 8-bit -> 16-bit unsigned * multiplication and shifts the result one bit left. */ -int avr_translate_FMUL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_FMUL(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_MUL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1037,9 +1036,9 @@ int avr_translate_FMUL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication * and shifts the result one bit left. */ -int avr_translate_FMULS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_FMULS(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_MUL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1076,9 +1075,9 @@ int avr_translate_FMULS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication * and shifts the result one bit left. */ -int avr_translate_FMULSU(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_FMULSU(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_MUL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1115,9 +1114,9 @@ int avr_translate_FMULSU(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * CALL. This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ -int avr_translate_ICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ICALL(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_IJMP_ICALL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1125,7 +1124,7 @@ int avr_translate_ICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) int ret = ctx->inst[0].npc; - gen_push_ret(env, ret); + gen_push_ret(ctx, ret); gen_jmp_z(); return BS_BRANCH; @@ -1138,9 +1137,9 @@ int avr_translate_ICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ -int avr_translate_IJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_IJMP(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_IJMP_ICALL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1155,7 +1154,7 @@ int avr_translate_IJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Loads data from the I/O Space (Ports, Timers, Configuration Registers, * etc.) into register Rd in the Register File. */ -int avr_translate_IN(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_IN(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[IN_Rd(opcode)]; int Imm = IN_Imm(opcode); @@ -1176,7 +1175,7 @@ int avr_translate_IN(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * BREQ and BRNE branches can be expected to perform consistently. When * operating on two's complement values, all signed branches are available. */ -int avr_translate_INC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_INC(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[INC_Rd(opcode)]; @@ -1194,15 +1193,15 @@ int avr_translate_INC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * RJMP. This instruction is not available in all devices. Refer to the device * specific instruction set summary.0 */ -int avr_translate_JMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_JMP(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_JMP_CALL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; } - gen_goto_tb(env, ctx, 0, JMP_Imm(opcode)); + gen_goto_tb(ctx, 0, JMP_Imm(opcode)); return BS_BRANCH; } @@ -1234,9 +1233,9 @@ static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr) } } -int avr_translate_LAC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LAC(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_RMW) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1271,9 +1270,9 @@ int avr_translate_LAC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * The Z-pointer Register is left unchanged by the operation. This instruction * is especially suited for setting status bits stored in SRAM. */ -int avr_translate_LAS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LAS(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_RMW) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1307,9 +1306,9 @@ int avr_translate_LAS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * The Z-pointer Register is left unchanged by the operation. This instruction * is especially suited for changing status bits stored in SRAM. */ -int avr_translate_LAT(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LAT(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_RMW) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1358,7 +1357,7 @@ int avr_translate_LAT(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * operation as LPM since the program memory is mapped to the data memory * space. */ -int avr_translate_LDX1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDX1(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDX1_Rd(opcode)]; TCGv addr = gen_get_xaddr(); @@ -1370,7 +1369,7 @@ int avr_translate_LDX1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_LDX2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDX2(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDX2_Rd(opcode)]; TCGv addr = gen_get_xaddr(); @@ -1385,7 +1384,7 @@ int avr_translate_LDX2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_LDX3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDX3(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDX3_Rd(opcode)]; TCGv addr = gen_get_xaddr(); @@ -1424,7 +1423,7 @@ int avr_translate_LDX3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * be used to achieve the same operation as LPM since the program memory is * mapped to the data memory space. */ -int avr_translate_LDY2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDY2(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDY2_Rd(opcode)]; TCGv addr = gen_get_yaddr(); @@ -1439,7 +1438,7 @@ int avr_translate_LDY2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_LDY3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDY3(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDY3_Rd(opcode)]; TCGv addr = gen_get_yaddr(); @@ -1453,7 +1452,7 @@ int avr_translate_LDY3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_LDDY(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDDY(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDDY_Rd(opcode)]; TCGv addr = gen_get_yaddr(); @@ -1495,7 +1494,7 @@ int avr_translate_LDDY(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * space. For using the Z-pointer for table lookup in Program memory see the * LPM and ELPM instructions. */ -int avr_translate_LDZ2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDZ2(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDZ2_Rd(opcode)]; TCGv addr = gen_get_zaddr(); @@ -1510,7 +1509,7 @@ int avr_translate_LDZ2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_LDZ3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDZ3(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDZ3_Rd(opcode)]; TCGv addr = gen_get_zaddr(); @@ -1525,7 +1524,7 @@ int avr_translate_LDZ3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_LDDZ(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDDZ(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDDZ_Rd(opcode)]; TCGv addr = gen_get_zaddr(); @@ -1542,7 +1541,7 @@ int avr_translate_LDDZ(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* Loads an 8 bit constant directly to register 16 to 31. */ -int avr_translate_LDI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDI(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[16 + LDI_Rd(opcode)]; int imm = LDI_Imm(opcode); @@ -1564,7 +1563,7 @@ int avr_translate_LDI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ -int avr_translate_LDS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LDS(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LDS_Rd(opcode)]; TCGv addr = tcg_temp_new_i32(); @@ -1596,9 +1595,9 @@ int avr_translate_LDS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * available in all devices. Refer to the device specific instruction set * summary */ -int avr_translate_LPM1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LPM1(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_LPM) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1619,9 +1618,9 @@ int avr_translate_LPM1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_LPM2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LPM2(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_LPM) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1642,9 +1641,9 @@ int avr_translate_LPM2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_LPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LPMX(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_LPMX) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_LPMX) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1677,7 +1676,7 @@ int avr_translate_LPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * loaded into the C Flag of the SREG. This operation effectively divides an * unsigned value by two. The C Flag can be used to round the result. */ -int avr_translate_LSR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_LSR(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[LSR_Rd(opcode)]; @@ -1695,7 +1694,7 @@ int avr_translate_LSR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * register Rr is left unchanged, while the destination register Rd is loaded * with a copy of Rr. */ -int avr_translate_MOV(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_MOV(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[MOV_Rd(opcode)]; TCGv Rr = cpu_r[MOV_Rr(opcode)]; @@ -1712,9 +1711,9 @@ int avr_translate_MOV(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * instruction is not available in all devices. Refer to the device specific * instruction set summary. */ -int avr_translate_MOVW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_MOVW(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_MOVW) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_MOVW) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1734,9 +1733,9 @@ int avr_translate_MOVW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication. */ -int avr_translate_MUL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_MUL(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_MUL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1766,9 +1765,9 @@ int avr_translate_MUL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication. */ -int avr_translate_MULS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_MULS(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_MUL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1806,9 +1805,9 @@ int avr_translate_MULS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a * signed and an unsigned number. */ -int avr_translate_MULSU(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_MULSU(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_MUL) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -1843,7 +1842,7 @@ int avr_translate_MULSU(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Replaces the contents of register Rd with its two's complement; the * value $80 is left unchanged. */ -int avr_translate_NEG(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_NEG(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[SUB_Rd(opcode)]; TCGv t0 = tcg_const_i32(0); @@ -1869,7 +1868,7 @@ int avr_translate_NEG(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* * This instruction performs a single cycle No Operation. */ -int avr_translate_NOP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_NOP(DisasContext *ctx, uint32_t opcode) { /* NOP */ @@ -1881,7 +1880,7 @@ int avr_translate_NOP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Performs the logical OR between the contents of register Rd and register * Rr and places the result in the destination register Rd. */ -int avr_translate_OR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_OR(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[OR_Rd(opcode)]; TCGv Rr = cpu_r[OR_Rr(opcode)]; @@ -1901,7 +1900,7 @@ int avr_translate_OR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Performs the logical OR between the contents of register Rd and a * constant and places the result in the destination register Rd. */ -int avr_translate_ORI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ORI(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[16 + ORI_Rd(opcode)]; int Imm = (ORI_Imm(opcode)); @@ -1918,7 +1917,7 @@ int avr_translate_ORI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Stores data from register Rr in the Register File to I/O Space (Ports, * Timers, Configuration Registers, etc.). */ -int avr_translate_OUT(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_OUT(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[OUT_Rd(opcode)]; int Imm = OUT_Imm(opcode); @@ -1937,7 +1936,7 @@ int avr_translate_OUT(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * available in all devices. Refer to the device specific instruction set * summary. */ -int avr_translate_POP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_POP(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[POP_Rd(opcode)]; @@ -1953,7 +1952,7 @@ int avr_translate_POP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * not available in all devices. Refer to the device specific instruction set * summary. */ -int avr_translate_PUSH(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_PUSH(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[PUSH_Rd(opcode)]; @@ -1971,14 +1970,13 @@ int avr_translate_PUSH(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * address location. The Stack Pointer uses a post-decrement scheme during * RCALL. */ -int avr_translate_RCALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_RCALL(DisasContext *ctx, uint32_t opcode) { int ret = ctx->inst[0].npc; int dst = ctx->inst[0].npc + sextract32(RCALL_Imm(opcode), 0, 12); - gen_push_ret(env, ret); - - gen_goto_tb(env, ctx, 0, dst); + gen_push_ret(ctx, ret); + gen_goto_tb(ctx, 0, dst); return BS_BRANCH; } @@ -1987,9 +1985,9 @@ int avr_translate_RCALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Returns from subroutine. The return address is loaded from the STACK. * The Stack Pointer uses a preincrement scheme during RET. */ -int avr_translate_RET(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_RET(DisasContext *ctx, uint32_t opcode) { - gen_pop_ret(env, cpu_pc); + gen_pop_ret(ctx, cpu_pc); tcg_gen_exit_tb(0); @@ -2004,9 +2002,9 @@ int avr_translate_RET(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * the application program. The Stack Pointer uses a pre-increment scheme * during RETI. */ -int avr_translate_RETI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_RETI(DisasContext *ctx, uint32_t opcode) { - gen_pop_ret(env, cpu_pc); + gen_pop_ret(ctx, cpu_pc); tcg_gen_movi_tl(cpu_If, 1); @@ -2021,11 +2019,11 @@ int avr_translate_RETI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * instruction can address the entire memory from every address location. See * also JMP. */ -int avr_translate_RJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_RJMP(DisasContext *ctx, uint32_t opcode) { int dst = ctx->inst[0].npc + sextract32(RJMP_Imm(opcode), 0, 12); - gen_goto_tb(env, ctx, 0, dst); + gen_goto_tb(ctx, 0, dst); return BS_BRANCH; } @@ -2037,7 +2035,7 @@ int avr_translate_RJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag * can be used to round the result. */ -int avr_translate_ROR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_ROR(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[ROR_Rd(opcode)]; TCGv t0 = tcg_temp_new_i32(); @@ -2059,7 +2057,7 @@ int avr_translate_ROR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Subtracts two registers and subtracts with the C Flag and places the * result in the destination register Rd. */ -int avr_translate_SBC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SBC(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[SBC_Rd(opcode)]; TCGv Rr = cpu_r[SBC_Rr(opcode)]; @@ -2085,7 +2083,7 @@ int avr_translate_SBC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* * SBCI -- Subtract Immediate with Carry */ -int avr_translate_SBCI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SBCI(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[16 + SBCI_Rd(opcode)]; TCGv Rr = tcg_const_i32(SBCI_Imm(opcode)); @@ -2113,7 +2111,7 @@ int avr_translate_SBCI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Sets a specified bit in an I/O Register. This instruction operates on * the lower 32 I/O Registers -- addresses 0-31. */ -int avr_translate_SBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SBI(DisasContext *ctx, uint32_t opcode) { TCGv data = tcg_temp_new_i32(); TCGv port = tcg_const_i32(SBI_Imm(opcode)); @@ -2133,7 +2131,7 @@ int avr_translate_SBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * next instruction if the bit is cleared. This instruction operates on the * lower 32 I/O Registers -- addresses 0-31. */ -int avr_translate_SBIC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SBIC(DisasContext *ctx, uint32_t opcode) { TCGv data = tcg_temp_new_i32(); TCGv port = tcg_const_i32(SBIC_Imm(opcode)); @@ -2160,7 +2158,7 @@ int avr_translate_SBIC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * next instruction if the bit is set. This instruction operates on the lower * 32 I/O Registers -- addresses 0-31. */ -int avr_translate_SBIS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SBIS(DisasContext *ctx, uint32_t opcode) { TCGv data = tcg_temp_new_i32(); TCGv port = tcg_const_i32(SBIS_Imm(opcode)); @@ -2189,9 +2187,9 @@ int avr_translate_SBIS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ -int avr_translate_SBIW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SBIW(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_ADIW_SBIW) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -2239,7 +2237,7 @@ int avr_translate_SBIW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction tests a single bit in a register and skips the next * instruction if the bit is cleared. */ -int avr_translate_SBRC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SBRC(DisasContext *ctx, uint32_t opcode) { TCGv Rr = cpu_r[SBRC_Rr(opcode)]; TCGv t0 = tcg_temp_new_i32(); @@ -2262,7 +2260,7 @@ int avr_translate_SBRC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction tests a single bit in a register and skips the next * instruction if the bit is set. */ -int avr_translate_SBRS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SBRS(DisasContext *ctx, uint32_t opcode) { TCGv Rr = cpu_r[SBRS_Rr(opcode)]; TCGv t0 = tcg_temp_new_i32(); @@ -2285,7 +2283,7 @@ int avr_translate_SBRS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction sets the circuit in sleep mode defined by the MCU * Control Register. */ -int avr_translate_SLEEP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SLEEP(DisasContext *ctx, uint32_t opcode) { gen_helper_sleep(cpu_env); @@ -2309,9 +2307,9 @@ int avr_translate_SLEEP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * determines the instruction high byte, and R0 determines the instruction low * byte. */ -int avr_translate_SPM(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SPM(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_SPM) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_SPM) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -2321,9 +2319,9 @@ int avr_translate_SPM(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_SPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SPMX(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_SPMX) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_SPMX) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; @@ -2333,7 +2331,7 @@ int avr_translate_SPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_STX1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STX1(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STX1_Rr(opcode)]; TCGv addr = gen_get_xaddr(); @@ -2345,7 +2343,7 @@ int avr_translate_STX1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_STX2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STX2(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STX2_Rr(opcode)]; TCGv addr = gen_get_xaddr(); @@ -2359,7 +2357,7 @@ int avr_translate_STX2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_STX3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STX3(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STX3_Rr(opcode)]; TCGv addr = gen_get_xaddr(); @@ -2373,7 +2371,7 @@ int avr_translate_STX3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_STY2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STY2(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STY2_Rd(opcode)]; TCGv addr = gen_get_yaddr(); @@ -2387,7 +2385,7 @@ int avr_translate_STY2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_STY3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STY3(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STY3_Rd(opcode)]; TCGv addr = gen_get_yaddr(); @@ -2401,7 +2399,7 @@ int avr_translate_STY3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_STDY(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STDY(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STDY_Rd(opcode)]; TCGv addr = gen_get_yaddr(); @@ -2415,7 +2413,7 @@ int avr_translate_STDY(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_STZ2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STZ2(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STZ2_Rd(opcode)]; TCGv addr = gen_get_zaddr(); @@ -2430,7 +2428,7 @@ int avr_translate_STZ2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_STZ3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STZ3(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STZ3_Rd(opcode)]; TCGv addr = gen_get_zaddr(); @@ -2445,7 +2443,7 @@ int avr_translate_STZ3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) return BS_NONE; } -int avr_translate_STDZ(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STDZ(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STDZ_Rd(opcode)]; TCGv addr = gen_get_zaddr(); @@ -2471,7 +2469,7 @@ int avr_translate_STDZ(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ -int avr_translate_STS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_STS(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[STS_Rd(opcode)]; TCGv addr = tcg_temp_new_i32(); @@ -2492,7 +2490,7 @@ int avr_translate_STS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * Subtracts two registers and places the result in the destination * register Rd. */ -int avr_translate_SUB(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SUB(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[SUB_Rd(opcode)]; TCGv Rr = cpu_r[SUB_Rr(opcode)]; @@ -2519,7 +2517,7 @@ int avr_translate_SUB(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * destination register Rd. This instruction is working on Register R16 to R31 * and is very well suited for operations on the X, Y, and Z-pointers. */ -int avr_translate_SUBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SUBI(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[16 + SUBI_Rd(opcode)]; TCGv Rr = tcg_const_i32(SUBI_Imm(opcode)); @@ -2546,7 +2544,7 @@ int avr_translate_SUBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) /* * Swaps high and low nibbles in a register. */ -int avr_translate_SWAP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_SWAP(DisasContext *ctx, uint32_t opcode) { TCGv Rd = cpu_r[SWAP_Rd(opcode)]; TCGv t0 = tcg_temp_new_i32(); @@ -2569,7 +2567,7 @@ int avr_translate_SWAP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * executed within a limited time given by the WD prescaler. See the Watchdog * Timer hardware specification. */ -int avr_translate_WDR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_WDR(DisasContext *ctx, uint32_t opcode) { gen_helper_wdr(cpu_env); @@ -2585,9 +2583,9 @@ int avr_translate_WDR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) * is left unchanged by the operation. This instruction is especially suited * for writing/reading status bits stored in SRAM. */ -int avr_translate_XCH(CPUAVRState *env, DisasContext *ctx, uint32_t opcode) +int avr_translate_XCH(DisasContext *ctx, uint32_t opcode) { - if (avr_feature(env, AVR_FEATURE_RMW) == false) { + if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) { gen_helper_unsupported(cpu_env); return BS_EXCP; diff --git a/target/avr/translate-inst.h b/target/avr/translate-inst.h index af2e076807..edb87439d6 100644 --- a/target/avr/translate-inst.h +++ b/target/avr/translate-inst.h @@ -23,9 +23,9 @@ typedef struct DisasContext DisasContext; -int avr_translate_NOP(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_NOP(DisasContext *ctx, uint32_t opcode); -int avr_translate_MOVW(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_MOVW(DisasContext *ctx, uint32_t opcode); static inline uint32_t MOVW_Rr(uint32_t opcode) { return extract32(opcode, 0, 4); @@ -36,7 +36,7 @@ static inline uint32_t MOVW_Rd(uint32_t opcode) return extract32(opcode, 4, 4); } -int avr_translate_MULS(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_MULS(DisasContext *ctx, uint32_t opcode); static inline uint32_t MULS_Rr(uint32_t opcode) { return extract32(opcode, 0, 4); @@ -47,7 +47,7 @@ static inline uint32_t MULS_Rd(uint32_t opcode) return extract32(opcode, 4, 4); } -int avr_translate_MULSU(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_MULSU(DisasContext *ctx, uint32_t opcode); static inline uint32_t MULSU_Rr(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -58,7 +58,7 @@ static inline uint32_t MULSU_Rd(uint32_t opcode) return extract32(opcode, 4, 3); } -int avr_translate_FMUL(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_FMUL(DisasContext *ctx, uint32_t opcode); static inline uint32_t FMUL_Rr(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -69,7 +69,7 @@ static inline uint32_t FMUL_Rd(uint32_t opcode) return extract32(opcode, 4, 3); } -int avr_translate_FMULS(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_FMULS(DisasContext *ctx, uint32_t opcode); static inline uint32_t FMULS_Rr(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -80,7 +80,7 @@ static inline uint32_t FMULS_Rd(uint32_t opcode) return extract32(opcode, 4, 3); } -int avr_translate_FMULSU(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_FMULSU(DisasContext *ctx, uint32_t opcode); static inline uint32_t FMULSU_Rr(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -91,7 +91,7 @@ static inline uint32_t FMULSU_Rd(uint32_t opcode) return extract32(opcode, 4, 3); } -int avr_translate_CPC(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_CPC(DisasContext *ctx, uint32_t opcode); static inline uint32_t CPC_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -103,7 +103,7 @@ static inline uint32_t CPC_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_SBC(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SBC(DisasContext *ctx, uint32_t opcode); static inline uint32_t SBC_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -115,7 +115,7 @@ static inline uint32_t SBC_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_ADD(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ADD(DisasContext *ctx, uint32_t opcode); static inline uint32_t ADD_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -127,7 +127,7 @@ static inline uint32_t ADD_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_AND(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_AND(DisasContext *ctx, uint32_t opcode); static inline uint32_t AND_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -139,7 +139,7 @@ static inline uint32_t AND_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_EOR(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_EOR(DisasContext *ctx, uint32_t opcode); static inline uint32_t EOR_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -151,7 +151,7 @@ static inline uint32_t EOR_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_OR(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_OR(DisasContext *ctx, uint32_t opcode); static inline uint32_t OR_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -163,7 +163,7 @@ static inline uint32_t OR_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_MOV(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_MOV(DisasContext *ctx, uint32_t opcode); static inline uint32_t MOV_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -175,7 +175,7 @@ static inline uint32_t MOV_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_CPSE(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_CPSE(DisasContext *ctx, uint32_t opcode); static inline uint32_t CPSE_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -187,7 +187,7 @@ static inline uint32_t CPSE_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_CP(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_CP(DisasContext *ctx, uint32_t opcode); static inline uint32_t CP_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -199,7 +199,7 @@ static inline uint32_t CP_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_SUB(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SUB(DisasContext *ctx, uint32_t opcode); static inline uint32_t SUB_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -211,7 +211,7 @@ static inline uint32_t SUB_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_ADC(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ADC(DisasContext *ctx, uint32_t opcode); static inline uint32_t ADC_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -223,7 +223,7 @@ static inline uint32_t ADC_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_CPI(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_CPI(DisasContext *ctx, uint32_t opcode); static inline uint32_t CPI_Rd(uint32_t opcode) { return extract32(opcode, 4, 4); @@ -235,7 +235,7 @@ static inline uint32_t CPI_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_SBCI(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SBCI(DisasContext *ctx, uint32_t opcode); static inline uint32_t SBCI_Rd(uint32_t opcode) { return extract32(opcode, 4, 4); @@ -247,7 +247,7 @@ static inline uint32_t SBCI_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_ORI(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ORI(DisasContext *ctx, uint32_t opcode); static inline uint32_t ORI_Rd(uint32_t opcode) { return extract32(opcode, 4, 4); @@ -259,7 +259,7 @@ static inline uint32_t ORI_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_SUBI(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SUBI(DisasContext *ctx, uint32_t opcode); static inline uint32_t SUBI_Rd(uint32_t opcode) { return extract32(opcode, 4, 4); @@ -271,7 +271,7 @@ static inline uint32_t SUBI_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_ANDI(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ANDI(DisasContext *ctx, uint32_t opcode); static inline uint32_t ANDI_Rd(uint32_t opcode) { return extract32(opcode, 4, 4); @@ -283,7 +283,7 @@ static inline uint32_t ANDI_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_LDDZ(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDDZ(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDDZ_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -296,7 +296,7 @@ static inline uint32_t LDDZ_Imm(uint32_t opcode) (extract32(opcode, 0, 3)); } -int avr_translate_LDDY(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDDY(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDDY_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -309,7 +309,7 @@ static inline uint32_t LDDY_Imm(uint32_t opcode) (extract32(opcode, 0, 3)); } -int avr_translate_STDZ(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STDZ(DisasContext *ctx, uint32_t opcode); static inline uint32_t STDZ_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -322,7 +322,7 @@ static inline uint32_t STDZ_Imm(uint32_t opcode) (extract32(opcode, 0, 3)); } -int avr_translate_STDY(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STDY(DisasContext *ctx, uint32_t opcode); static inline uint32_t STDY_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -335,7 +335,7 @@ static inline uint32_t STDY_Imm(uint32_t opcode) (extract32(opcode, 0, 3)); } -int avr_translate_LDS(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDS(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDS_Imm(uint32_t opcode) { return extract32(opcode, 0, 16); @@ -346,79 +346,79 @@ static inline uint32_t LDS_Rd(uint32_t opcode) return extract32(opcode, 20, 5); } -int avr_translate_LDZ2(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDZ2(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDZ2_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LDZ3(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDZ3(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDZ3_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LPM2(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LPM2(DisasContext *ctx, uint32_t opcode); static inline uint32_t LPM2_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LPMX(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LPMX(DisasContext *ctx, uint32_t opcode); static inline uint32_t LPMX_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_ELPM2(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ELPM2(DisasContext *ctx, uint32_t opcode); static inline uint32_t ELPM2_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_ELPMX(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ELPMX(DisasContext *ctx, uint32_t opcode); static inline uint32_t ELPMX_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LDY2(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDY2(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDY2_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LDY3(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDY3(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDY3_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LDX1(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDX1(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDX1_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LDX2(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDX2(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDX2_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LDX3(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDX3(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDX3_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_POP(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_POP(DisasContext *ctx, uint32_t opcode); static inline uint32_t POP_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_STS(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STS(DisasContext *ctx, uint32_t opcode); static inline uint32_t STS_Imm(uint32_t opcode) { return extract32(opcode, 0, 16); @@ -429,185 +429,185 @@ static inline uint32_t STS_Rd(uint32_t opcode) return extract32(opcode, 20, 5); } -int avr_translate_STZ2(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STZ2(DisasContext *ctx, uint32_t opcode); static inline uint32_t STZ2_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_STZ3(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STZ3(DisasContext *ctx, uint32_t opcode); static inline uint32_t STZ3_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_XCH(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_XCH(DisasContext *ctx, uint32_t opcode); static inline uint32_t XCH_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LAS(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LAS(DisasContext *ctx, uint32_t opcode); static inline uint32_t LAS_Rr(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LAC(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LAC(DisasContext *ctx, uint32_t opcode); static inline uint32_t LAC_Rr(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LAT(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LAT(DisasContext *ctx, uint32_t opcode); static inline uint32_t LAT_Rr(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_STY2(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STY2(DisasContext *ctx, uint32_t opcode); static inline uint32_t STY2_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_STY3(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STY3(DisasContext *ctx, uint32_t opcode); static inline uint32_t STY3_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_STX1(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STX1(DisasContext *ctx, uint32_t opcode); static inline uint32_t STX1_Rr(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_STX2(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STX2(DisasContext *ctx, uint32_t opcode); static inline uint32_t STX2_Rr(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_STX3(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_STX3(DisasContext *ctx, uint32_t opcode); static inline uint32_t STX3_Rr(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_PUSH(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_PUSH(DisasContext *ctx, uint32_t opcode); static inline uint32_t PUSH_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_COM(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_COM(DisasContext *ctx, uint32_t opcode); static inline uint32_t COM_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_NEG(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_NEG(DisasContext *ctx, uint32_t opcode); static inline uint32_t NEG_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_SWAP(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SWAP(DisasContext *ctx, uint32_t opcode); static inline uint32_t SWAP_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_INC(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_INC(DisasContext *ctx, uint32_t opcode); static inline uint32_t INC_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_ASR(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ASR(DisasContext *ctx, uint32_t opcode); static inline uint32_t ASR_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_LSR(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LSR(DisasContext *ctx, uint32_t opcode); static inline uint32_t LSR_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_ROR(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ROR(DisasContext *ctx, uint32_t opcode); static inline uint32_t ROR_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_BSET(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_BSET(DisasContext *ctx, uint32_t opcode); static inline uint32_t BSET_Bit(uint32_t opcode) { return extract32(opcode, 4, 3); } -int avr_translate_IJMP(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_IJMP(DisasContext *ctx, uint32_t opcode); -int avr_translate_EIJMP(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_EIJMP(DisasContext *ctx, uint32_t opcode); -int avr_translate_BCLR(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_BCLR(DisasContext *ctx, uint32_t opcode); static inline uint32_t BCLR_Bit(uint32_t opcode) { return extract32(opcode, 4, 3); } -int avr_translate_RET(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_RET(DisasContext *ctx, uint32_t opcode); -int avr_translate_RETI(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_RETI(DisasContext *ctx, uint32_t opcode); -int avr_translate_ICALL(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ICALL(DisasContext *ctx, uint32_t opcode); -int avr_translate_EICALL(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_EICALL(DisasContext *ctx, uint32_t opcode); -int avr_translate_SLEEP(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SLEEP(DisasContext *ctx, uint32_t opcode); -int avr_translate_BREAK(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_BREAK(DisasContext *ctx, uint32_t opcode); -int avr_translate_WDR(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_WDR(DisasContext *ctx, uint32_t opcode); -int avr_translate_LPM1(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LPM1(DisasContext *ctx, uint32_t opcode); -int avr_translate_ELPM1(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ELPM1(DisasContext *ctx, uint32_t opcode); -int avr_translate_SPM(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SPM(DisasContext *ctx, uint32_t opcode); -int avr_translate_SPMX(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SPMX(DisasContext *ctx, uint32_t opcode); -int avr_translate_DEC(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_DEC(DisasContext *ctx, uint32_t opcode); static inline uint32_t DEC_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); } -int avr_translate_DES(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_DES(DisasContext *ctx, uint32_t opcode); static inline uint32_t DES_Imm(uint32_t opcode) { return extract32(opcode, 4, 4); } -int avr_translate_JMP(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_JMP(DisasContext *ctx, uint32_t opcode); static inline uint32_t JMP_Imm(uint32_t opcode) { return (extract32(opcode, 20, 5) << 17) | (extract32(opcode, 0, 17)); } -int avr_translate_CALL(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_CALL(DisasContext *ctx, uint32_t opcode); static inline uint32_t CALL_Imm(uint32_t opcode) { return (extract32(opcode, 20, 5) << 17) | (extract32(opcode, 0, 17)); } -int avr_translate_ADIW(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_ADIW(DisasContext *ctx, uint32_t opcode); static inline uint32_t ADIW_Rd(uint32_t opcode) { return extract32(opcode, 4, 2); @@ -619,7 +619,7 @@ static inline uint32_t ADIW_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_SBIW(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SBIW(DisasContext *ctx, uint32_t opcode); static inline uint32_t SBIW_Rd(uint32_t opcode) { return extract32(opcode, 4, 2); @@ -631,7 +631,7 @@ static inline uint32_t SBIW_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_CBI(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_CBI(DisasContext *ctx, uint32_t opcode); static inline uint32_t CBI_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -642,7 +642,7 @@ static inline uint32_t CBI_Imm(uint32_t opcode) return extract32(opcode, 3, 5); } -int avr_translate_SBIC(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SBIC(DisasContext *ctx, uint32_t opcode); static inline uint32_t SBIC_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -653,7 +653,7 @@ static inline uint32_t SBIC_Imm(uint32_t opcode) return extract32(opcode, 3, 5); } -int avr_translate_SBI(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SBI(DisasContext *ctx, uint32_t opcode); static inline uint32_t SBI_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -664,7 +664,7 @@ static inline uint32_t SBI_Imm(uint32_t opcode) return extract32(opcode, 3, 5); } -int avr_translate_SBIS(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SBIS(DisasContext *ctx, uint32_t opcode); static inline uint32_t SBIS_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -675,7 +675,7 @@ static inline uint32_t SBIS_Imm(uint32_t opcode) return extract32(opcode, 3, 5); } -int avr_translate_MUL(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_MUL(DisasContext *ctx, uint32_t opcode); static inline uint32_t MUL_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -687,7 +687,7 @@ static inline uint32_t MUL_Rr(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_IN(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_IN(DisasContext *ctx, uint32_t opcode); static inline uint32_t IN_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -699,7 +699,7 @@ static inline uint32_t IN_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_OUT(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_OUT(DisasContext *ctx, uint32_t opcode); static inline uint32_t OUT_Rd(uint32_t opcode) { return extract32(opcode, 4, 5); @@ -711,13 +711,13 @@ static inline uint32_t OUT_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_RJMP(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_RJMP(DisasContext *ctx, uint32_t opcode); static inline uint32_t RJMP_Imm(uint32_t opcode) { return extract32(opcode, 0, 12); } -int avr_translate_LDI(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_LDI(DisasContext *ctx, uint32_t opcode); static inline uint32_t LDI_Rd(uint32_t opcode) { return extract32(opcode, 4, 4); @@ -729,13 +729,13 @@ static inline uint32_t LDI_Imm(uint32_t opcode) (extract32(opcode, 0, 4)); } -int avr_translate_RCALL(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_RCALL(DisasContext *ctx, uint32_t opcode); static inline uint32_t RCALL_Imm(uint32_t opcode) { return extract32(opcode, 0, 12); } -int avr_translate_BRBS(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_BRBS(DisasContext *ctx, uint32_t opcode); static inline uint32_t BRBS_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -746,7 +746,7 @@ static inline uint32_t BRBS_Imm(uint32_t opcode) return extract32(opcode, 3, 7); } -int avr_translate_BRBC(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_BRBC(DisasContext *ctx, uint32_t opcode); static inline uint32_t BRBC_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -757,7 +757,7 @@ static inline uint32_t BRBC_Imm(uint32_t opcode) return extract32(opcode, 3, 7); } -int avr_translate_BLD(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_BLD(DisasContext *ctx, uint32_t opcode); static inline uint32_t BLD_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -768,7 +768,7 @@ static inline uint32_t BLD_Rd(uint32_t opcode) return extract32(opcode, 4, 5); } -int avr_translate_BST(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_BST(DisasContext *ctx, uint32_t opcode); static inline uint32_t BST_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -779,7 +779,7 @@ static inline uint32_t BST_Rd(uint32_t opcode) return extract32(opcode, 4, 5); } -int avr_translate_SBRC(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SBRC(DisasContext *ctx, uint32_t opcode); static inline uint32_t SBRC_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); @@ -790,7 +790,7 @@ static inline uint32_t SBRC_Rr(uint32_t opcode) return extract32(opcode, 4, 5); } -int avr_translate_SBRS(CPUAVRState *env, DisasContext* ctx, uint32_t opcode); +int avr_translate_SBRS(DisasContext *ctx, uint32_t opcode); static inline uint32_t SBRS_Bit(uint32_t opcode) { return extract32(opcode, 0, 3); diff --git a/target/avr/translate.c b/target/avr/translate.c index d6f1f71ebc..d9e491fc3b 100644 --- a/target/avr/translate.c +++ b/target/avr/translate.c @@ -82,11 +82,10 @@ void avr_translate_init(void) done_init = 1; } -static void decode_opc(AVRCPU *cpu, DisasContext *ctx, InstInfo *inst) +static void decode_opc(DisasContext *ctx, InstInfo *inst) { - CPUAVRState *env = &cpu->env; - - inst->opcode = cpu_ldl_code(env, inst->cpc * 2);/* pc points to words */ + /* PC points to words. */ + inst->opcode = cpu_ldl_code(ctx->env, inst->cpc * 2); inst->length = 16; inst->translate = NULL; @@ -118,6 +117,7 @@ void gen_intermediate_code(CPUAVRState *env, struct TranslationBlock *tb) pc_start = tb->pc / 2; ctx.tb = tb; + ctx.env = env; ctx.memidx = 0; ctx.bstate = BS_NONE; ctx.singlestep = cs->singlestep_enabled; @@ -143,7 +143,7 @@ void gen_intermediate_code(CPUAVRState *env, struct TranslationBlock *tb) /* decode first instruction */ ctx.inst[0].cpc = pc_start; - decode_opc(cpu, &ctx, &ctx.inst[0]); + decode_opc(&ctx, &ctx.inst[0]); do { /* set curr/next PCs */ cpc = ctx.inst[0].cpc; @@ -151,7 +151,7 @@ void gen_intermediate_code(CPUAVRState *env, struct TranslationBlock *tb) /* decode next instruction */ ctx.inst[1].cpc = ctx.inst[0].npc; - decode_opc(cpu, &ctx, &ctx.inst[1]); + decode_opc(&ctx, &ctx.inst[1]); /* translate current instruction */ tcg_gen_insn_start(cpc); @@ -172,7 +172,7 @@ void gen_intermediate_code(CPUAVRState *env, struct TranslationBlock *tb) } if (ctx.inst[0].translate) { - ctx.bstate = ctx.inst[0].translate(env, &ctx, ctx.inst[0].opcode); + ctx.bstate = ctx.inst[0].translate(&ctx, ctx.inst[0].opcode); } if (num_insns >= max_insns) { @@ -202,7 +202,7 @@ void gen_intermediate_code(CPUAVRState *env, struct TranslationBlock *tb) switch (ctx.bstate) { case BS_STOP: case BS_NONE: - gen_goto_tb(env, &ctx, 0, npc); + gen_goto_tb(&ctx, 0, npc); break; case BS_BRANCH: case BS_EXCP: diff --git a/target/avr/translate.h b/target/avr/translate.h index 711886ed63..fabbe69ee9 100644 --- a/target/avr/translate.h +++ b/target/avr/translate.h @@ -69,8 +69,7 @@ uint32_t get_opcode(uint8_t const *code, unsigned bitBase, unsigned bitSize); typedef struct DisasContext DisasContext; typedef struct InstInfo InstInfo; -typedef int (*translate_function_t)(CPUAVRState *env, DisasContext *ctx, - uint32_t opcode); +typedef int (*translate_function_t)(DisasContext *ctx, uint32_t opcode); struct InstInfo { target_long cpc; target_long npc; @@ -82,6 +81,7 @@ struct InstInfo { /* This is the state at translation time. */ struct DisasContext { struct TranslationBlock *tb; + CPUAVRState *env; InstInfo inst[2];/* two consecutive instructions */ @@ -94,12 +94,9 @@ struct DisasContext { void avr_decode(uint32_t pc, uint32_t *length, uint32_t opcode, translate_function_t *translate); -static inline void gen_goto_tb(CPUAVRState *env, DisasContext *ctx, - int n, target_ulong dest) +static inline void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) { - TranslationBlock *tb; - - tb = ctx->tb; + TranslationBlock *tb = ctx->tb; if (ctx->singlestep == 0) { tcg_gen_goto_tb(n); -- 2.11.0 (Apple Git-81)