There are no need to run a periodic timer to emulate updated-end logic. Only run the timer when the UF is cleared.
Signed-off-by: Yang Zhang <yang.z.zh...@intel.com> --- hw/mc146818rtc.c | 95 +++++++++++++++++++++++++++++++++++++++++++++++++---- 1 files changed, 87 insertions(+), 8 deletions(-) diff --git a/hw/mc146818rtc.c b/hw/mc146818rtc.c index 3dd71ac..461e8f3 100644 --- a/hw/mc146818rtc.c +++ b/hw/mc146818rtc.c @@ -67,6 +67,11 @@ typedef struct RTCState { /* periodic timer */ QEMUTimer *periodic_timer; int64_t next_periodic_time; + /* update-ended timer */ + QEMUTimer *update_timer; + QEMUTimer *update_timer2; + uint64_t next_update_time; + uint32_t use_timer; uint16_t irq_reinject_on_ack_count; uint32_t irq_coalesced; uint32_t period; @@ -132,7 +137,8 @@ static void rtc_coalesced_timer(void *opaque) } #endif -static void rtc_timer_update(RTCState *s, int64_t current_time) +/* handle periodic timer */ +static void periodic_timer_update(RTCState *s, int64_t current_time) { int period_code, period; int64_t cur_clock, next_irq_clock; @@ -170,7 +176,7 @@ static void rtc_periodic_timer(void *opaque) { RTCState *s = opaque; - rtc_timer_update(s, s->next_periodic_time); + periodic_timer_update(s, s->next_periodic_time); s->cmos_data[RTC_REG_C] |= REG_C_PF; if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { s->cmos_data[RTC_REG_C] |= REG_C_IRQF; @@ -197,6 +203,59 @@ static void rtc_periodic_timer(void *opaque) } } +/* handle update-ended timer */ +static void check_update_timer(RTCState *s) +{ + uint64_t next_update_time, expire_time; + uint64_t guest_usec; + qemu_del_timer(s->update_timer); + qemu_del_timer(s->update_timer2); + + if (!((s->cmos_data[RTC_REG_C] & (REG_C_UF | REG_C_AF)) == + (REG_C_UF | REG_C_AF)) && !(s->cmos_data[RTC_REG_B] & REG_B_SET)) { + s->use_timer = 1; + guest_usec = get_guest_rtc_us(s) % USEC_PER_SEC; + if (guest_usec >= (USEC_PER_SEC - 244)) { + /* RTC is in update cycle when enabling UIE */ + s->cmos_data[RTC_REG_A] |= REG_A_UIP; + next_update_time = (USEC_PER_SEC - guest_usec) * NS_PER_USEC; + expire_time = qemu_get_clock_ns(rtc_clock) + next_update_time; + qemu_mod_timer(s->update_timer2, expire_time); + } else { + next_update_time = (USEC_PER_SEC - guest_usec - 244) * NS_PER_USEC; + expire_time = qemu_get_clock_ns(rtc_clock) + next_update_time; + s->next_update_time = expire_time; + qemu_mod_timer(s->update_timer, expire_time); + } + } else { + s->use_timer = 0; + } +} + +static void rtc_update_timer(void *opaque) +{ + RTCState *s = opaque; + + if (rtc_running(s)) { + s->cmos_data[RTC_REG_A] |= REG_A_UIP; + qemu_mod_timer(s->update_timer2, + qemu_get_clock_ns(rtc_clock) + 244000UL); + } +} + +static void rtc_update_timer2(void *opaque) +{ + RTCState *s = opaque; + + if (rtc_running(s)) { + s->cmos_data[RTC_REG_C] |= REG_C_UF; + s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; + s->cmos_data[RTC_REG_C] |= REG_C_IRQF; + qemu_irq_raise(s->irq); + } + check_update_timer(s); +} + static void rtc_set_offset(RTCState *s, bool running, bool div_reset) { if (div_reset) @@ -250,13 +309,14 @@ static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data) rtc_set_time(s); rtc_set_offset(s, 0, 1); s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; + check_update_timer(s); divider_reset = 0; } } /* UIP bit is read only */ s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | (s->cmos_data[RTC_REG_A] & REG_A_UIP); - rtc_timer_update(s, qemu_get_clock_ns(rtc_clock)); + periodic_timer_update(s, qemu_get_clock_ns(rtc_clock)); break; case RTC_REG_B: if (data & REG_B_SET) { @@ -284,7 +344,8 @@ static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data) } } s->cmos_data[RTC_REG_B] = data; - rtc_timer_update(s, qemu_get_clock_ns(rtc_clock)); + periodic_timer_update(s, qemu_get_clock_ns(rtc_clock)); + check_update_timer(s); break; case RTC_REG_C: case RTC_REG_D: @@ -417,15 +478,25 @@ static uint32_t cmos_ioport_read(void *opaque, uint32_t addr) ret = s->cmos_data[s->cmos_index]; break; case RTC_REG_A: - ret = s->cmos_data[s->cmos_index]; - if (update_in_progress(s)) { - ret |= REG_A_UIP; + if (s->use_timer == 0) { + if (update_in_progress(s)) { + s->cmos_data[s->cmos_index] |= REG_A_UIP; + } else { + s->cmos_data[s->cmos_index] &= ~REG_A_UIP; + } } + ret = s->cmos_data[s->cmos_index]; break; case RTC_REG_C: ret = s->cmos_data[s->cmos_index]; qemu_irq_lower(s->irq); s->cmos_data[RTC_REG_C] = 0x00; + if (rtc_running(s)) { + rtc_calibrate_time(s); + } + if (ret & (REG_C_UF | REG_C_AF)) { + check_update_timer(s); + } #ifdef TARGET_I386 if(s->irq_coalesced && (s->cmos_data[RTC_REG_B] & REG_B_PIE) && @@ -521,6 +592,9 @@ static const VMStateDescription vmstate_rtc = { VMSTATE_UINT64(old_guest_usec, RTCState), VMSTATE_TIMER(periodic_timer, RTCState), VMSTATE_INT64(next_periodic_time, RTCState), + VMSTATE_TIMER(update_timer, RTCState), + VMSTATE_TIMER(update_timer2, RTCState), + VMSTATE_UINT64(next_update_time, RTCState), VMSTATE_UINT32_V(irq_coalesced, RTCState, 2), VMSTATE_UINT32_V(period, RTCState, 2), VMSTATE_END_OF_LIST() @@ -533,7 +607,8 @@ static void rtc_notify_clock_reset(Notifier *notifier, void *data) int64_t now = *(int64_t *)data; rtc_set_date_from_host(&s->dev); - rtc_timer_update(s, now); + periodic_timer_update(s, now); + check_update_timer(s); #ifdef TARGET_I386 if (s->lost_tick_policy == LOST_TICK_SLEW) { rtc_coalesced_timer_update(s); @@ -555,6 +630,7 @@ static void rtc_reset(void *opaque) s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); + check_update_timer(s); qemu_irq_lower(s->irq); @@ -625,6 +701,9 @@ static int rtc_initfn(ISADevice *dev) #endif s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s); + s->update_timer = qemu_new_timer_ns(rtc_clock, rtc_update_timer, s); + s->update_timer2 = qemu_new_timer_ns(rtc_clock, rtc_update_timer2, s); + check_update_timer(s); s->clock_reset_notifier.notify = rtc_notify_clock_reset; qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier); -- 1.7.1