Hello,
Vector y is an alphabetically sorted version of vector x. Will both
samples, X and Y, be "absolutely" random or will they have systematic
differences? And: Should I sort or shuffle a vector before sampling?
Thank you, *S*
x <- as.factor(LETTERS[sequence(10:1)])
y <- sort(x)
X <- sampl
Thanks, I got it! (And I think I should have googled what "replicated"
means!) However, then Bortz, Lienert, Boehnke are imprecise, if not
wrong: "Der Friedman-Test setzt voraus, dass die N Individuen
wechselseitig unabhängig sind, dass also nicht etwa ein und dasselbe
Individuum zweimal oder m
On 19.02.12 19:31, Tal Galili wrote:
The following post would not answer your question at full, but might give
some good code/information:
http://www.r-statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-code/
Thank you, Tal! As you already mentioned, your interesting post supports
Some attribute x from 17 individuals was recorded repeatedly on 6 time
points using a Likert scale with 7 distractors. Which statistical
test(s) can I apply to check whether the changes along the 6 time points
were significant?
set.seed( 123 )
x <- matrix( sample( 1:7, 17*6, repl=T ),
nrow =
Hello
Hello
I have a data frame, x, holding 5 persons answering the question which
cars they have used:
# the data frame
x <- as.data.frame(
matrix(
c('BMW', '', '',
'Mercedes', 'VW', '',
'Skoda', 'VW', 'BMW',
'', '', '',
'VW', 'Skoda', ''
),
ncol=3,
Hello
How come that the function md.pattern() from package 'mice' delivers a
warning when run over data sets with more than 31 variables?
library( 'mice' )
x <- as.data.frame(
matrix(
sample( c(1:3, 1:3, 1:3, NA), 7000, repl=TRUE ),
ncol=35,
dimnames=list(NULL,
paste('V', 1
Hello
How can I apply functions along "layers" of a data matrix?
Example:
daf <- data.frame(
'id' = rep(1:5, 3),
matrix(1:60, nrow=15, dimnames=list( NULL, paste('v', 1:4, sep='') )),
rep = rep(1:3, each=5)
)
The data frame "daf" contains 3 repetitions/layers (rep) of 4 variables
of 5 p
7 matches
Mail list logo