Dear [R] Users, I have implemented a linear model with this syntax: model<- lm (var_dependent ~ var_indipendent + factor + var_indipendent : factor, dataframe) anova (model) Response: var_dependent Df Sum Sq Mean Sq F value Pr(>F) var_indipendent 1 20.5522 20.5522 87.8701 1.167e-14 *** factor 1 0.1060 0.1060 0.4530 0.50277 var_indipendent:factor 1 1.3861 1.3861 5..9261 0.01706 * Residuals 83 19.4132 0.2339 --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
The factor variable influence significatvly the regression. Which test I have to use to understand whom factors (i.e. in my dataset factors are the different sampling sites) influence the correlation? Any suggestions how to perform post-hoc comparions? Thanks a lot! Francesco Nutini P.S. numbers have no significance, it's just an example [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.