If you mean the convolution 

(f*g)(x) = integral f(x-y)g(y) dy 

for integrable functions f and g on R^n, then I think using the fact that
the Fourier transform of the convolution is the product of the Fourier
transforms of f and g is the most efficient approach, unless f or g have
some special structure.

For this you just need fft() in base R. You do have to do a little
bookkeeping to manage the discretizations.

Reid Huntsinger

-----Original Message-----
From: [EMAIL PROTECTED]
[mailto:[EMAIL PROTECTED] On Behalf Of Mari Luz Gamiz Perez
Sent: Tuesday, February 15, 2005 5:19 AM
To: r-help@stat.math.ethz.ch
Subject: [R] convolution of functions


Dear sir,

we would like to know if there exist  any  R package containing the
computational performance of  the n-fold Stieljes' convolution of functions.



We look forward to hearing from you.

Thank you in advance.





____________________________________

M.Luz Gámiz Pérez
Dpt. Estadística e Investigación Operativa
Facultad de Ciencias
Universidad de Granada
Telf.: 958-243156
e-mail: [EMAIL PROTECTED]

______________________________________________
R-help@stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide!
http://www.R-project.org/posting-guide.html

______________________________________________
R-help@stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to