On 2017-10-22 17:27, Jianrong Li wrote:
> Let $r=x_{1}^{4} + 2 \, x_{1}^{3} x_{2} + 4 \, x_{1}^{2} x_{2}^{2} + 2
> \, x_{1}
> x_{2}^{3} + x_{2}^{4} + 2 \, x_{1}^{3} x_{3} + 2 \, x_{2}^{3} x_{3} + 4
> \, x_{1}^{2} x_{3}^{2} + 4 \, x_{2}^{2} x_{3}^{2} + 2 \, x_{1} x_{3}^{3}
> + 2 \, x_{2} x_{3}^{3} +
Dear All,
Let $r=x_{1}^{4} + 2 \, x_{1}^{3} x_{2} + 4 \, x_{1}^{2} x_{2}^{2} + 2 \,
x_{1}
x_{2}^{3} + x_{2}^{4} + 2 \, x_{1}^{3} x_{3} + 2 \, x_{2}^{3} x_{3} + 4
\, x_{1}^{2} x_{3}^{2} + 4 \, x_{2}^{2} x_{3}^{2} + 2 \, x_{1} x_{3}^{3}
+ 2 \, x_{2} x_{3}^{3} + x_{3}^{4}$.
1. How to return the list