On 3/22/12 9:03 PM, Emil wrote:
The current project I'm working on needs to do a lot of matrix
multiplications, of the form
B * D * B.T
where D is a symmetric positive semi-definite matrix with rational
entries, B is a matrix with rational entries, and B * B.T is a
diagonal matrix (not necessarily the identity - i.e. the rows are
orthogonal, but not orthonormal, if those are the correct terms).
Yes, those are the correct terms.
I was wondering if Sage will make use of the specific set-up here to
speed up the matrix product?
I don't believe that Sage will use any special algorithms to use the
structure of D or B, though it may use some special algorithms because D
and B are rational matrices (if they are defined as matrices over QQ).
Jason
--
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to
sage-support+unsubscr...@googlegroups.com
For more options, visit this group at
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org