Hi,
there are currently a number of unattended pull requests for sklearn on 
github in the area of Gaussian processes. If someone on the mailing list 
has experience with sklearn's implementation of GPs, it would be nice to 
get some feedback or get the PRs merged in.

Two PRs (https://github.com/scikit-learn/scikit-learn/pull/2798 and 
https://github.com/scikit-learn/scikit-learn/pull/2867) are essentially 
equivalent (they just differ in the unitttest); they fix a subtle bug in 
the GP hyperparameter optimization and could be easily merged in.

PR 2930 (https://github.com/scikit-learn/scikit-learn/pull/2930) adds 
further correlation models for GPs and allows to estimate the noise 
level (nugget) from data. Some examples are given in the PR. Some 
feedback would be highly appreciated.

Best,
Jan

-- 
  Dipl.-Inform. Jan Hendrik Metzen
  Cognitive Robotics - Team Leader of Team "Learning"

  Universität Bremen und DFKI GmbH, Robotics Innovation Center
  FB 3 - Mathematik und Informatik
  AG Robotik
  Robert-Hooke-Straße 1
  28359 Bremen, Germany


  Tel.:     +49 421 178 45-4123
  Zentrale: +49 421 178 45-6611
  Fax:      +49 421 178 45-4150
  E-Mail:   j...@informatik.uni-bremen.de
  Homepage: http://www.informatik.uni-bremen.de/~jhm/

  Weitere Informationen: http://www.informatik.uni-bremen.de/robotik


------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to