Hi. I have been trying to develop imagenet, I have the base of LENET and modifying it and adding things I would like to get Imagenet. My problem is that weights are not updated so the network does not learn and I can not figure out where the problem is and I do not know what to do! I am really stressed and blocked. So any help or idea would be welcome!!
I have attached two files, "layers.py" where the layers are described and "network.py" where the architecture and the learning/testing processing is described and carried out. Thank you very much in advance. Regards. Beatriz -- --- You received this message because you are subscribed to the Google Groups "theano-users" group. To unsubscribe from this group and stop receiving emails from it, send an email to theano-users+unsubscr...@googlegroups.com. For more options, visit https://groups.google.com/d/optout.
import numpy as np import theano import theano.tensor as T from theano.tensor.signal import pool from theano.tensor.nnet import conv2d from pylearn2.expr.normalize import CrossChannelNormalization class Fully_Connected_Dropout(object): # http://christianherta.de/lehre/dataScience/machineLearning/neuralNetworks/Dropout.php def __init__(self, rng, is_train, input, n_in, n_out, W=None, b=None, p=0.5): self.input = input # end-snippet-1 rng = np.random.RandomState(1234) srng = T.shared_randomstreams.RandomStreams(rng.randint(999999)) # for a discussion of the initialization, see # https://plus.google.com/+EricBattenberg/posts/f3tPKjo7LFa if W is None: W_values = np.asarray( rng.uniform( low=-np.sqrt(6. / (n_in + n_out)), high=np.sqrt(6. / (n_in + n_out)), size=(n_in, n_out) ), dtype=theano.config.floatX ) W = theano.shared(value=W_values, name='W', borrow=True) # init biases to positive values, so we should be initially in the linear regime of the linear rectified function if b is None: b_values = np.ones((n_out,), dtype=theano.config.floatX) * np.cast[theano.config.floatX](0.01) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b lin_output = T.dot(input, self.W) + self.b output = theano.tensor.nnet.relu(lin_output) # multiply output and drop -> in an approximation the scaling effects cancel out input_drop = np.cast[theano.config.floatX](1. / p) * output mask = srng.binomial(n=1, p=p, size=input_drop.shape, dtype=theano.config.floatX) train_output = input_drop * mask # is_train is a pseudo boolean theano variable for switching between training and prediction self.output = T.switch(T.neq(is_train, 0), train_output, output) # parameters of the model self.params = [self.W, self.b] class Fully_Connected_Softmax(object): def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=theano.tensor.nnet.relu): self.input = input if W is None: W_values = np.asarray( rng.uniform( low=-np.sqrt(6. / (n_in + n_out)), high=np.sqrt(6. / (n_in + n_out)), size=(n_in, n_out) ), dtype=theano.config.floatX ) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name='W', borrow=True) if b is None: b_values = np.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b lin_output = T.nnet.softmax(T.dot(input, self.W) + self.b) self.output = ( lin_output if activation is None else activation(lin_output) ) self.params = [self.W, self.b] class LeNetConvPoolLRNLayer(object): def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2), stride=(1, 1), lrn=False): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height, filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows, #cols) """ assert image_shape[1] == filter_shape[1] self.input = input self.lrn = lrn if self.lrn: self.lrn_func = CrossChannelNormalization() # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = np.prod(filter_shape[1:]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) // np.prod(poolsize)) # initialize weights with random weights W_bound = np.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared( np.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX ), borrow=True ) # the bias is a 1D tensor -- one bias per output feature map b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True) # convolve input feature maps with filters conv_out = conv2d( input=input, filters=self.W, filter_shape=filter_shape, input_shape=image_shape, subsample=stride ) conv_out = conv_out + self.b.dimshuffle('x', 0, 'x', 'x') # ReLu self.output = T.maximum(conv_out, 0) # pool each feature map individually, using maxpooling pooled_out = pool.pool_2d( input=conv_out, ds=poolsize, ignore_border=True ) # add the bias term. Since the bias is a vector (1D array), we first # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will # thus be broadcasted across mini-batches and feature map # width & height self.output = pooled_out # LRN if self.lrn: # lrn_input = gpu_contiguous(self.output) self.output = self.lrn_func(self.output) self.params = [self.W, self.b] # keep track of model input self.input = input class LeNetConvPoolLayer(object): def __init__(self, rng, input, filter_shape, image_shape, poolsize=(1, 1)): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height, filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows, #cols) """ assert image_shape[1] == filter_shape[1] self.input = input # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = np.prod(filter_shape[1:]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) // np.prod(poolsize)) # initialize weights with random weights W_bound = np.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared( np.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX ), borrow=True ) # the bias is a 1D tensor -- one bias per output feature map b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True) # convolve input feature maps with filters conv_out = conv2d( input=input, filters=self.W, filter_shape=filter_shape, input_shape=image_shape, ) conv_out = conv_out + self.b.dimshuffle('x', 0, 'x', 'x') # ReLu self.output = T.maximum(conv_out, 0) # pool each feature map individually, using maxpooling pooled_out = pool.pool_2d( input=conv_out, ds=poolsize, ignore_border=True ) # add the bias term. Since the bias is a vector (1D array), we first # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will # thus be broadcasted across mini-batches and feature map # width & height self.output = pooled_out # store parameters of this layer self.params = [self.W, self.b] # keep track of model input self.input = input
# En este archivo de python se va a utilizar la base de datos de FRAV y Casia de imagenes y se va a seguir la configuracion de la CNN del paper 'Learn convolutional neural network for face anti-spoofing' import numpy import timeit from pylab import * from logistic_sgd import LogisticRegression from sklearn.svm import SVC import matplotlib.pyplot as plt from read_Data import * from layers import * import sys #nkerns=[96, 256, 386, 384, 256] def evaluate_lenet5(learning_rate=0.001, n_epochs=10, nkerns=[10, 10, 10, 10, 10], batch_size=20): """ Demonstrates lenet on MNIST dataset :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: path to the dataset used for training /testing (MNIST here) :type nkerns: list of ints :param nkerns: number of kernels on each layer """ # orig_stdout = sys.stdout # f = file('out.txt', 'w') # sys.stdout = f print ('Start reading the data...') rng = numpy.random.RandomState(123456) #train_index, test_index, validate_index, train_set_x, test_set_x, y_train, y_test, valid_set_x, y_val = read_images() # open_file2 = open('C:\Users\FRAV\Desktop\Beatriz\FRAv_casia_ImageNet\data_casia_all.pkl', 'rb') open_file2 = open('data_frav_all_origi.pkl', 'rb') [train_index, test_index, validate_index, train_set_x, test_set_x, y_train, y_test, valid_set_x, y_val] = pickle.load(open_file2) open_file2.close() print (numpy.array(train_set_x).shape, numpy.array(test_set_x).shape, numpy.array(valid_set_x).shape) print (numpy.array(y_train).shape, numpy.array(y_test).shape, numpy.array(y_val).shape) train_set_x = theano.shared(numpy.array(train_set_x, dtype= 'float32')) test_set_x = theano.shared(numpy.array(test_set_x, dtype= 'float32')) train_set_y = theano.shared(numpy.array(y_train, dtype='int32')) test_set_y = theano.shared(numpy.array(y_test, dtype='int32')) valid_set_x = theano.shared(numpy.array(valid_set_x, dtype= 'float32')) valid_set_y = theano.shared(numpy.array(y_val,dtype='int32')) # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] print("n_train_samples: %d" % n_train_batches) print("n_valid_samples: %d" % n_valid_batches) print("n_test_samples: %d" % n_test_batches) print("n_batches:") n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size print("n_train_batches: %d" % n_train_batches) print("n_valid_batches: %d" % n_valid_batches) print("n_test_batches: %d" % n_test_batches) # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch variable_train_test = 0 # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of [int] labels is_train = T.iscalar('is_train') # To differenciate between train and test ###################### # BUILD ACTUAL MODEL # ###################### print ('... building the model') # Reshape matrix of rasterized images of shape (batch_size, 28 * 28) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (28, 28) is the size of MNIST images. layer0_input = x.reshape((batch_size, 3, 128, 128)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) # maxpooling reduces this further to (24/2, 24/2) = (12, 12) # 4D output tensor is thus of shape(batch_size, nkerns[0], 12, 12) layer0 = LeNetConvPoolLRNLayer( rng, input=layer0_input, image_shape=(batch_size, 3, 128, 128), filter_shape=(nkerns[0], 3, 11, 11), stride=(1, 1), lrn=True, poolsize=(2, 2) ) layer1 = LeNetConvPoolLRNLayer( rng, input=layer0.output, # image_shape=(batch_size, nkerns[0], 27, 27), image_shape=(batch_size, nkerns[0], 59, 59), filter_shape=(nkerns[1], nkerns[0], 4, 4), lrn=True, poolsize=(2, 2) ) layer2 = LeNetConvPoolLayer( rng, input=layer1.output, image_shape=(batch_size, nkerns[1], 28, 28), filter_shape=(nkerns[2], nkerns[1], 3, 3), poolsize=(1, 1) ) layer3 = LeNetConvPoolLayer( rng, input=layer2.output, image_shape=(batch_size, nkerns[2], 26, 26), filter_shape=(nkerns[3], nkerns[2], 3, 3), poolsize=(1, 1) ) layer4 = LeNetConvPoolLayer( rng, input=layer3.output, image_shape=(batch_size, nkerns[3], 24, 24), filter_shape=(nkerns[4], nkerns[3], 3, 3), poolsize=(2, 2) ) layer5_input = layer4.output.flatten(2) # construct a fully-connected sigmoidal layer layer5 = Fully_Connected_Dropout( rng, input=layer5_input, n_in=nkerns[4] * 11 * 11, n_out=4096, is_train=is_train ) layer6 = Fully_Connected_Dropout( rng, input=layer5.output, n_in=4096, n_out=4096, is_train=is_train ) layer7 = Fully_Connected_Softmax( rng, input=layer6.output, n_in=4096, n_out=4096 ) # classify the values of the fully-connected sigmoidal layer svm = SVC() layer8 = LogisticRegression(input=layer7.output, n_in=4096, n_out=2) salidas_capa8 = theano.function( [index], layer8.y_pred, on_unused_input='ignore', givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size], is_train: numpy.cast['int32'](1) } ) salidas_probabilidad = theano.function( [index], layer8.p_y_given_x, on_unused_input='ignore', givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size], is_train: numpy.cast['int32'](1) } ) # the cost we minimize during training is the NLL of the model cost = layer8.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer8.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size], is_train: numpy.cast['int32'](1) } ) validate_model = theano.function( [index], layer8.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size], is_train: numpy.cast['int32'](1) } ) # create a list of all model parameters to be fit by gradient descent params = layer0.params + layer1.params + layer2.params + layer3.params + layer4.params + layer5.params + layer6.params + layer7.params + layer8.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads) ] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + np.cast['int32'](1)) * batch_size], y: train_set_y[index * batch_size: (index + np.cast['int32'](1)) * batch_size], is_train: np.cast['int32'](0) } ) # end-snippet-1 ############### # TRAIN MODEL # ############### print ('... training') print (' ') # early-stopping parameters patience = 100000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) print("patience: %d" % patience) print("patience_increase: %d" % patience_increase) print("improvement threshold: %d" % improvement_threshold) print("validation_frequency: %d" % validation_frequency) print (' ') # go through this many minibatche before checking the network # on the validation set; in this case we check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() error_epoch = [] lista_coste = [] epoch = 0 done_looping = False # save_file = open('/home/beaa/PycharmProjects/TFM/LearningTheano/salidas0.pkl', 'wb') # save_file1 = open('/home/beaa/PycharmProjects/TFM/LearningTheano/wb0.pkl', 'wb') # save_file2 = open('/home/beaa/PycharmProjects/TFM/LearningTheano/salidas1.pkl', 'wb') # save_file3 = open('/home/beaa/PycharmProjects/TFM/LearningTheano/wb1.pkl', 'wb') print ('n_train_batches', n_train_batches) while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in range(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print('training @ iter = ', iter) cost_ij = train_model(minibatch_index) lista_coste.append(cost_ij) if (iter + 1) % validation_frequency == 0: variable_train_test = 1 # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in range(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) error_epoch.append(this_validation_loss * 100) # if we got the best validation score until now if this_validation_loss < best_validation_loss: # improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter w0_test = layer0.W.get_value() b0_test = layer0.b.get_value() w1_test = layer1.W.get_value() b1_test = layer1.b.get_value() w2_test = layer2.W.get_value() b2_test = layer2.b.get_value() w3_test = layer3.W.get_value() b3_test = layer3.b.get_value() w4_test = layer4.W.get_value() b4_test = layer4.b.get_value() w5_test = layer5.W.get_value() b5_test = layer5.b.get_value() w6_test = layer6.W.get_value() b6_test = layer6.b.get_value() w7_test = layer7.W.get_value() b7_test = layer7.b.get_value() w8_test = layer8.W.get_value() b8_test = layer8.b.get_value() if patience <= iter: done_looping = True break ############################### ### TESTING MODEL ### ############################### # Aqui se tiene que cargar la red layer0.W.set_value(w0_test) layer0.b.set_value(b0_test) layer1.W.set_value(w1_test) layer1.b.set_value(b1_test) layer2.W.set_value(w2_test) layer2.b.set_value(b2_test) layer3.W.set_value(w3_test) layer3.b.set_value(b3_test) layer4.W.set_value(w4_test) layer4.b.set_value(b4_test) layer5.W.set_value(w5_test) layer5.b.set_value(b5_test) layer6.W.set_value(w6_test) layer6.b.set_value(b6_test) layer7.W.set_value(w7_test) layer7.b.set_value(b7_test) layer8.W.set_value(w8_test) layer8.b.set_value(b8_test) y_pred_junto = [] y_prob_junto = [] # test it on the test set for i in range(n_test_batches): test_losses = [test_model(i)] y_pred_test = salidas_capa8(i) y_probabilidad = salidas_probabilidad(i) test_score = numpy.mean(test_losses) for j in y_pred_test: y_pred_junto.append(j) for j in y_probabilidad: y_prob_junto.append(j[0]) print((' test error of best model %f %%') % (test_score * 100.)) end_time = timeit.default_timer() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) analize_results(y_test, y_pred_junto, y_prob_junto) print(('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.))) plt.clf() plt.plot(error_epoch) plt.ylabel('error') plt.xlabel('epoch') plt.savefig('error_frav.png') plt.clf() plt.plot(lista_coste) plt.ylabel('cost_ij') plt.xlabel('epoch') plt.savefig('cost_frav.png') # sys.stdout = orig_stdout # f.close() if __name__ == '__main__': evaluate_lenet5() def experiment(state, channel): evaluate_lenet5(state.learning_rate, dataset=state.dataset)