Dear Denis, Let me coment a bit your last message. I am not really aware about the specific system that you are treating. However, as far as I have understood from the massage, you are treating a system involving aromatic molecules. Note that the source of you problem is related to the shortcoming of XC-functionals used in DFT to describe Van Der Waals interactions !!. And I guess, even if you move to a PW code you will run with similar problems !!?????. What you need is a correction of DFT to improve its description of these Van Der Waals interactions. A very interesting approach proposed by a group at EPFL (PRB. 75, 205131 (2007)), consists of making corrections at the pseudopotential level to reproduce MP2 or CC calculations !!! these pseudopots are designed for CPMD !!!, One can try to convert their format to that supported by SIESTA and try them !!!!!!!
Best wishes, Imad "Pablo A. Denis" <[EMAIL PROTECTED]> a écrit : Dear Oleksandr, Thank you very much for your answer. I have been playing a little with the basis sets. The problem was basis set. BSSE optimization is important, but only for the default DZP. The interaction energies without BSSE are atractive by 10-18 kcal/mol, very huge as usual for siesta. BBS BBPD BBT BB2Hover deault DZP -3.2 (0.3 bsseopt) -1.34 2.7 3.25 DZPshort -1.4 0.54 3.35 DZPlong 0.5 2.35 3.2 3.6 target values 1 2.6 3.1 3.3 negative = repulsion BBS and BBPD are parallel aromatics wheras BB2Hover and BBT not. So the problem is to find a basis set that describe the stacking and not overbind the other complexes that have hydrogens over the pi clouds. Even with the DZP Long the interaction between the parallel aromatics is not well described. Tournus employed DZP+3s on carbon and DZ on H. The reported good values for BBS and BBPD but no result is available for BBT. I will keep working or maybe I will change to plane wave, the problem is that pw takes more resources... Thank you very much for you help. Regards, pablo P.S. below there is a full .fdf for BSSE maybe the cause of everything is a mistake... # FDF file for bb # General System descriptors SystemName bb # Descriptive name of the system SystemLabel bb # Short name for naming files NumberOfAtoms 24 # Number of atoms NumberOfSpecies 4 # Number of species %block Chemical_Species_Label 1 6 C 2 1 H 3 -6 C_G 4 -1 H_G %endblock Chemical_Species_Label %block PAO.Basis C 3 0.01 n=2 0 2 E 69.86 4.68 6.004 4.195 1.000 1.000 n=2 1 2 E 18.95 3.78 4.995 3.100 1.000 1.000 n=3 2 1 E 16.84 0.05 4.187 1.000 H 2 0.22 n=1 0 2 E 2.07 0.00 4.971 1.771 1.000 1.000 n=2 1 1 E 0.89 0.01 4.988 1.000 C_G 3 0.01 n=2 0 2 E 69.86 4.68 6.004 4.195 1.000 1.000 n=2 1 2 E 18.95 3.78 4.995 3.100 1.000 1.000 n=3 2 1 E 16.84 0.05 4.187 1.000 H_G 2 0.22 n=1 0 2 E 2.07 0.00 4.971 1.771 1.000 1.000 n=2 1 1 E 0.89 0.01 4.988 1.000 %endblock PAO.Basis # Lattice, coordinates, k-sampling LatticeConstant 15.0000 Ang %block LatticeVectors 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 %endblock LatticeVectors %block kgrid_Monkhorst_Pack 1 0 0 0.0 0 1 0 0.0 0 0 1 0.0 %endblock kgrid_Monkhorst_Pack AtomicCoordinatesFormat NotScaledCartesianAng # Format for coordinates AtomicCoorFormatOut Ang %block AtomicCoordinatesAndAtomicSpecies -0.00001305 1.39137696 -0.58199054 1 0.00001559 -1.39131893 -0.58209854 1 1.20541798 0.69582469 -0.58201361 1 1.20540902 -0.69575812 -0.58202552 1 -1.20535060 0.69582449 -0.58216644 1 -1.20539960 -0.69574182 -0.58217128 1 0.00001963 2.48284460 -0.57741741 2 0.00000245 -2.48281112 -0.57757235 2 2.15127460 1.24139401 -0.57738336 2 2.15129256 -1.24137904 -0.57747607 2 -2.15125940 1.24140624 -0.57767286 2 -2.15127288 -1.24137847 -0.57773904 2 0.00003196 1.39125978 2.77519589 3 0.00000545 -1.39125731 2.77530704 3 1.20542647 0.69575598 2.77474408 3 1.20541822 -0.69577865 2.77485974 3 -1.20544732 0.69581618 2.77474221 3 -1.20545658 -0.69579639 2.77485844 3 0.00001154 2.48268398 2.77220809 4 -0.00002279 -2.48268283 2.77248520 4 2.15118306 1.24170370 2.77070140 4 2.15115349 -1.24173433 2.77084865 4 -2.15116586 1.24172703 2.77071756 4 -2.15117033 -1.24170091 2.77086670 4 %endblock AtomicCoordinatesAndAtomicSpecies # DFT, Grid, SCF XC.functional LDA # Exchange-correlation functional type XC.authors CA # Particular parametrization of xc func SpinPolarized .false. # Spin unpolarized calculation MeshCutoff 200. Ry # Equivalent planewave cutoff for the grid MaxSCFIterations 450 # Maximum number of SCF iterations per step DM.MixingWeight 0.3 # New DM amount for next SCF cycle DM.Tolerance 1.d-6 # Tolerance in maximum difference # between input and output DM DM.NumberPulay 3 # Number of SCF steps between pulay mixing # Eigenvalue problem: order-N or diagonalization SolutionMethod diagon # OrderN or Diagon ElectronicTemperature 0 K # Temp. for Fermi smearing # Molecular dynamics and relaxations #MD.TypeOfRun CG # Type of dynamics: #MD.NumCGsteps 100 # Number of CG steps for # coordinate optimization #MD.MaxCGDispl 0.05 Ang # Maximum atomic displacement # in one CG step (Bohr) #MD.MaxForceTol 0.01 eV/Ang # Tolerance in the maximum # atomic force (Ry/Bohr) # Output options WriteCoorInitial .true. WriteCoorStep .true. WriteForces .true. WriteKpoints .true. WriteEigenvalues .true. WriteKbands .true. WriteBands .true. WriteMullikenPop 1 # Write Mulliken Population Analysis WriteCoorXmol .true. WriteMDCoorXmol .true. WriteMDhistory .true. WriteCoorXmol .true. # Options for saving/reading information DM.UseSaveDM # Use DM Continuation files MD.UseSaveXV .true. # Use stored positions and velocities MD.UseSaveCG .true. # Use stored positions and velocities SaveRho # Write valence pseudocharge at the mesh SaveDeltaRho # Write RHOscf-RHOatm at the mesh SaveElectrostaticPotential .false. # Write the total elect. pot. at the mesh SaveTotalPotential .false. # Write the total pot. at the mesh WriteSiestaDim .false. # Write minimum dim to siesta.h and stop WriteDenchar # Write information for DENCHAR DirectPhi .true. SaveMemory .true. --------------------------------- Ne gardez plus qu'une seule adresse mail ! Copiez vos mails vers Yahoo! Mail