Dear Denis,

Let me coment a bit your last message. I am not really aware about the specific 
system that you are treating. However, as far as I have understood from the 
massage, you are treating a system involving aromatic molecules. Note that the 
source of you problem is related to the shortcoming of XC-functionals used in 
DFT to describe Van Der Waals interactions !!. And I guess, even if you move to 
a PW code you will run with similar problems !!?????. What you need is a 
correction of DFT to improve its description of these Van Der Waals 
interactions. 
A very interesting approach proposed by a group at EPFL (PRB. 75, 205131 
(2007)), consists of making corrections at the pseudopotential level to 
reproduce MP2 or CC calculations !!! these pseudopots are designed for CPMD 
!!!, One can try to convert their format to that supported by SIESTA and try 
them !!!!!!!

Best wishes,
Imad

 

"Pablo A. Denis" <[EMAIL PROTECTED]> a écrit : Dear Oleksandr,

Thank you very much for your answer. I have been playing a little with the 
basis sets. The problem was basis set. BSSE optimization is important, but 
only for the default DZP. The interaction energies without BSSE are 
atractive by 10-18 kcal/mol, very huge as usual for siesta.

                                          BBS                          BBPD 
BBT                 BB2Hover

deault DZP                   -3.2 (0.3 bsseopt)         -1.34 
2.7                          3.25

DZPshort                       -1.4                                0.54 
3.35

DZPlong                          0.5                                 2.35 
3.2                         3.6

target values                    1                                    2.6 
3.1                        3.3

negative = repulsion

BBS and BBPD are parallel aromatics wheras BB2Hover and BBT not. So the 
problem is to find a basis set that describe the stacking and not overbind 
the other complexes that have hydrogens over the pi clouds. Even with the 
DZP Long the interaction between the parallel aromatics is not well 
described. Tournus employed DZP+3s on carbon and DZ on H. The reported good 
values for BBS and BBPD but no result is available for BBT. I will keep 
working or maybe I will change to plane wave, the problem is that pw takes 
more resources...

Thank you very much for you help.

Regards,

pablo

P.S. below there is a full .fdf for BSSE maybe the cause of everything is a 
mistake...

# FDF file for bb

# General System descriptors

SystemName bb                # Descriptive name of the system
SystemLabel            bb           # Short name for naming files

NumberOfAtoms           24           # Number of atoms
NumberOfSpecies         4            # Number of species

%block Chemical_Species_Label
  1    6    C
  2    1    H
  3   -6    C_G
  4   -1    H_G
%endblock Chemical_Species_Label

%block PAO.Basis
C     3      0.01
 n=2    0    2   E     69.86      4.68
   6.004   4.195
   1.000   1.000
 n=2    1    2   E     18.95      3.78
   4.995   3.100
   1.000   1.000
 n=3    2    1   E     16.84      0.05
   4.187
   1.000
H     2      0.22
 n=1    0    2   E      2.07      0.00
   4.971   1.771
   1.000   1.000
 n=2    1    1   E      0.89      0.01
   4.988
   1.000
C_G     3      0.01
 n=2    0    2   E     69.86      4.68
   6.004   4.195
   1.000   1.000
 n=2    1    2   E     18.95      3.78
   4.995   3.100
   1.000   1.000
 n=3    2    1   E     16.84      0.05
  4.187
   1.000
H_G     2      0.22
 n=1    0    2   E      2.07      0.00
   4.971   1.771
   1.000   1.000
 n=2    1    1   E      0.89      0.01
   4.988
   1.000
%endblock PAO.Basis


# Lattice, coordinates, k-sampling
  LatticeConstant     15.0000 Ang
%block LatticeVectors
     1.000000     0.000000     0.000000
     0.000000     1.000000     0.000000
     0.000000     0.000000     1.000000
%endblock LatticeVectors

%block kgrid_Monkhorst_Pack
   1  0  0  0.0
   0  1  0  0.0
   0  0  1  0.0
%endblock kgrid_Monkhorst_Pack

AtomicCoordinatesFormat NotScaledCartesianAng # Format for coordinates
AtomicCoorFormatOut     Ang

%block AtomicCoordinatesAndAtomicSpecies
  -0.00001305    1.39137696   -0.58199054   1
    0.00001559   -1.39131893   -0.58209854   1
    1.20541798    0.69582469   -0.58201361   1
    1.20540902   -0.69575812   -0.58202552   1
   -1.20535060    0.69582449   -0.58216644   1
   -1.20539960   -0.69574182   -0.58217128   1
    0.00001963    2.48284460   -0.57741741   2
    0.00000245   -2.48281112   -0.57757235   2
    2.15127460    1.24139401   -0.57738336   2
    2.15129256   -1.24137904   -0.57747607   2
   -2.15125940    1.24140624   -0.57767286   2
   -2.15127288   -1.24137847   -0.57773904   2
    0.00003196    1.39125978    2.77519589   3
    0.00000545   -1.39125731    2.77530704   3
    1.20542647    0.69575598    2.77474408   3
    1.20541822   -0.69577865    2.77485974   3
   -1.20544732    0.69581618    2.77474221   3
   -1.20545658   -0.69579639    2.77485844   3
    0.00001154    2.48268398    2.77220809   4
   -0.00002279   -2.48268283    2.77248520   4
    2.15118306    1.24170370    2.77070140   4
    2.15115349   -1.24173433    2.77084865   4
   -2.15116586    1.24172703    2.77071756   4
   -2.15117033   -1.24170091    2.77086670   4
%endblock AtomicCoordinatesAndAtomicSpecies

# DFT, Grid, SCF

XC.functional           LDA         # Exchange-correlation functional type
XC.authors              CA          # Particular parametrization of xc func
SpinPolarized           .false.     # Spin unpolarized calculation
MeshCutoff              200. Ry     # Equivalent planewave cutoff for the 
grid
MaxSCFIterations        450         # Maximum number of SCF iterations per 
step
DM.MixingWeight         0.3         # New DM amount for next SCF cycle
DM.Tolerance            1.d-6       # Tolerance in maximum difference
                                    # between input and output DM
DM.NumberPulay          3           # Number of SCF steps between pulay 
mixing

# Eigenvalue problem: order-N or diagonalization

SolutionMethod          diagon      # OrderN or Diagon
ElectronicTemperature   0 K         # Temp. for Fermi smearing

# Molecular dynamics and relaxations

#MD.TypeOfRun            CG         # Type of dynamics:

#MD.NumCGsteps          100           # Number of CG steps for
                                  #   coordinate optimization
#MD.MaxCGDispl          0.05 Ang      # Maximum atomic displacement
                                    #   in one CG step (Bohr)
#MD.MaxForceTol         0.01 eV/Ang  # Tolerance in the maximum
                                   #   atomic force (Ry/Bohr)
# Output options

WriteCoorInitial        .true.
WriteCoorStep           .true.
WriteForces             .true.
WriteKpoints            .true.
WriteEigenvalues        .true.
WriteKbands             .true.
WriteBands              .true.
WriteMullikenPop        1            # Write Mulliken Population Analysis
WriteCoorXmol           .true.
WriteMDCoorXmol         .true.
WriteMDhistory          .true.
WriteCoorXmol           .true.

# Options for saving/reading information

DM.UseSaveDM                         # Use DM Continuation files
MD.UseSaveXV            .true.      # Use stored positions and velocities
MD.UseSaveCG            .true.      # Use stored positions and velocities
SaveRho                              # Write valence pseudocharge at the 
mesh
SaveDeltaRho                         # Write RHOscf-RHOatm at the mesh
SaveElectrostaticPotential .false.   # Write the total elect. pot. at the 
mesh
SaveTotalPotential      .false.      # Write the total pot. at the mesh
WriteSiestaDim          .false.      # Write minimum dim to siesta.h and 
stop
WriteDenchar                         # Write information for DENCHAR


DirectPhi .true.
SaveMemory .true.


       
---------------------------------
 Ne gardez plus qu'une seule adresse mail ! Copiez vos mails vers Yahoo! Mail 

Reply via email to