-fast flag increases performance, it is transformed into -O3 I guess
but not sure. Try also using -fastsse instead of fast - it worked for
me also, but depends on your processor.

On 21/02/07, bipul rakshit <[EMAIL PROTECTED]> wrote:
hello sir,
now it works, and give me the right results.. thanks a lot... but can you
tell me what if i use fast and what if not....


Yurko Natanzon <[EMAIL PROTECTED]> wrote:
Dear bipul rakshit,
I see you are using Portland compiler with -fast flag. It is known for
causing problems like crashes and bad results for siesta 2.0 at least.
I suggest to play with optimization flags, for example, change to -O2,
-O1 or so.

On 21/02/07, bipul rakshit wrote:
> hello siesta user,
> i am running siesta in parallel. As a test i run the same problem in
> parallel which i already run in serial. But now the energy of the system
in
> parallel become very large as compared to the same system when i run in
> serial......
> can anybody suggest me what is the problem
> i am sending the two output file as
> tmse.serial and tmse.parallel for serial and parallel results respec...
>
> thanks
>
> ________________________________
> Here's a new way to find what you're looking for - Yahoo! Answers
> --0-2002543467-1172055332=:51085--
>
>
> Siesta Version: siesta-2.0-release
> Architecture : i686-pc-linux-gnu--Portland
> Compiler flags: mpif90 -g -fast
> PARALLEL version
>
> * Running in serial mode with MPI
> >> Start of run: 21-FEB-2007 11:44:07
>
> ***********************
> * WELCOME TO SIESTA *
> ***********************
>
> reinit: Reading from standard input
> ************************** Dump of input data file
> ****************************
> # $Id: ptn.fdf,v 1.1 1999/04/20 14:43:44 emilio Exp $
> #
>
-----------------------------------------------------------------------------
> # FDF fo
> #
> # E. Artacho, April 1999
> #
>
-----------------------------------------------------------------------------
> SystemName tmse
> SystemLabel tmse
> NumberOfAtoms 2
> NumberOfSpecies 2
> %block ChemicalSpeciesLabel
> 1 69 Tm
> 2 34 Se
> %endblock ChemicalSpeciesLabel
> PAO.BasisType split
> #PAO.BasisSize DZP
> PAO.EnergyShift 0.1 eV
> PAO.SplitNorm 0.2000
> %block PAO.Basis # Define Basis set
> Tm 2 # Species label, number of l-shells
> n=6 0 2 P 1 # n, l, Nzeta, Polarization, NzetaPol
> 6.982 5.645
> 1.000 1.000
> # n=5 2 2 # n, l, Nzeta
> # 5.044 2.803
> # 1.000 1.000
> n=4 3 2 P
> 6.982 5.645
> 1.000 1.000
> Se 2
> n=4 0 2
> 5.64483 3.02914
> 1.00 1.00
> n=4 1 2
> 7.25855 2.85547
> 1.00 1.00
> %endblock PAO.Basis
> LatticeConstant 5.6900 Ang
> #%block LatticeParameters
> # 3.92 3.92 3.92 60.0 60.0 60.0
> #%endblock LatticeParameters
> %block LatticeVectors
> 0.5 0.5 0.0
> 0.5 0.0 0.5
> 0.0 0.5 0.5
> %endblock LatticeVectors
> MeshCutoff 250.00 Ry
> # SCF options
> MaxSCFIterations 200 # Maximum number of SCF iter
> DM.MixingWeight 0.3 # New DM amount for next SCF cycle
> DM.Tolerance 1.d-4 # Tolerance in maximum difference
> DM.NumberPulay 8 # Number of pulay mixing steps
> DM.UseSaveDM .false. # tells if already existing density
> matrix is to be used or not
> WriteCoorXmol
> WriteMullikenPop 1
> WriteForces .true.
> ElectronicTemperature 30 meV
> xc.functional LDA
> xc.authors CA
> # WriteCoorStep .true.
> #AtomCoorFormatOut Ang
> SolutionMethod Diagon # OrderN or Diagon
> AtomicCoordinatesFormat Fractional
> %block AtomicCoordinatesAndAtomicSpecies
> 0.0000 0.0000 0.0000 1
> 0.5000 0.5000 0.5000 2
> %endblock AtomicCoordinatesAndAtomicSpecies
> MD.TypeOfRun CG # Type of dynamics:
> MD.NumCGsteps 180 # Number of CG steps for
> MD.MaxCGDispl 0.4 Ang # Maximum atomic displacement
> MD.MaxForceTol 0.01 eV/Ang # Tolerance in the maximum
> MD.MaxStressTol 0.1 GPa
> MD.VariableCell .true.
> %block kgrid_Monkhorst_Pack
> 12 0 0 0.0
> 0 12 0 0.0
> 0 0 12 0.0
> %endblock kgrid_Monkhorst_Pack
> Diag.DivideAndConquer .false.
> ************************** End of input data file
> *****************************
>
> reinit:
>
-----------------------------------------------------------------------
> reinit: System Name: tmse
> reinit:
>
-----------------------------------------------------------------------
> reinit: System Label: tmse
> reinit:
>
-----------------------------------------------------------------------
>
> initatom: Reading input for the pseudopotentials and atomic orbitals
> ----------
> Species number: 1 Label: Tm Atomic number: 69
> Species number: 2 Label: Se Atomic number: 34
> Ground state valence configuration: 6s02 4f13
> Reading pseudopotential information in formatted form from Tm.psf
> Ground state valence configuration: 4s02 4p04
> Reading pseudopotential information in formatted form from Se.psf
> For Tm, standard SIESTA heuristics set lmxkb to 5
> (one more than the basis l, including polarization orbitals).
> Use PS.lmax or PS.KBprojectors blocks to override.
> Warning: For Tm lmxkb would have been set to 5
> Setting it to maximum value of 3 (f projector)
> Warning: Empty PAO shell. l = 1
> Will have a KB projector anyway...
> Warning: Empty PAO shell. l = 2
> Will have a KB projector anyway...
> For Se, standard SIESTA heuristics set lmxkb to 2
> (one more than the basis l, including polarization orbitals).
> Use PS.lmax or PS.KBprojectors blocks to override.
>
>
>
===============================================================================
> Tm Z= 69 Mass= 168.93 Charge= 0.00000
> Lmxo=3 Lmxkb=3 BasisType=split Semic=F
> L=0 Nsemic=0 Cnfigmx=6
> n=1 nzeta=2 polorb=1
> vcte: 0.00000
> rinn: 0.00000
> rcs: 6.9820 5.6450
> lambdas: 1.0000 1.0000
> L=1 Nsemic=0 Cnfigmx=6
> L=2 Nsemic=0 Cnfigmx=5
> L=3 Nsemic=0 Cnfigmx=4
> n=1 nzeta=2 polorb=1
> vcte: 0.00000
> rinn: 0.00000
> rcs: 6.9820 5.6450
> lambdas: 1.0000 1.0000
>
-------------------------------------------------------------------------------
> L=0 Nkbl=1 erefs: 0.17977+309
> L=1 Nkbl=1 erefs: 0.17977+309
> L=2 Nkbl=1 erefs: 0.17977+309
> L=3 Nkbl=1 erefs: 0.17977+309
>
===============================================================================
>
>
> atom: Called for Tm (Z = 69)
>
> read_vps: Pseudopotential generation method:
> read_vps: ATM 3.2.2 Troullier-Martins
>
> read_vps: Pseudopotential generated from a relativistic atomic calculation
> read_vps: There are spin-orbit pseudopotentials available
> read_vps: Spin-orbit interaction is not included in this calculation
>
> read_vps: Valence configuration (pseudopotential and basis set
generation):
> 6s( 2.00) rc: 3.97
> 6p( 0.00) rc: 3.97
> 5d( 0.00) rc: 3.97
> 4f(13.00) rc: 4.17
> Total valence charge: 15.00000
>
> xc_check: Exchange-correlation functional:
> xc_check: Ceperley-Alder
> V l=0 = -2*Zval/r beyond r= 5.4925
> V l=1 = -2*Zval/r beyond r= 5.4925
> V l=2 = -2*Zval/r beyond r= 5.4925
> V l=3 = -2*Zval/r beyond r= 5.4925
> All V_l potentials equal beyond r= 4.1201
> This should be close to max(r_c) in ps generation
> All pots = -2*Zval/r beyond r= 5.4925
> Using large-core scheme for Vlocal
>
> atom: Estimated core radius 5.49252
>
> atom: Including non-local core corrections could be a good idea
> atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 5.84676
> atom: Maximum radius for r*vlocal+2*Zval: 5.56161
> GHOST: No ghost state for L = 0
> GHOST: No ghost state for L = 1
> GHOST: No ghost state for L = 2
> GHOST: No ghost state for L = 3
>
> KBgen: Kleinman-Bylander projectors:
> l= 0 rc= 4.277570 el= -0.296039 Ekb= -0.622965 kbcos= -0.594473
> l= 1 rc= 4.277570 el= -0.086738 Ekb= -0.619196 kbcos= -0.226166
> l= 2 rc= 4.224433 el= -0.071792 Ekb= -4.063882 kbcos= -0.589249
> l= 3 rc= 4.120130 el= -0.251699 Ekb=-12.164449 kbcos= -0.886908
>
> KBgen: Total number of Kleinman-Bylander projectors: 16
> atom:
>
-------------------------------------------------------------------------
>
> atom: SANKEY-TYPE ORBITALS:
> atom: Selected multiple-zeta basis: split
>
> SPLIT: Orbitals with angular momentum L= 0
>
> SPLIT: Basis orbitals for state 6s
>
> izeta = 1
> lambda = 1.000000
> rc = 6.964935
> energy = -0.261274
> kinetic = 0.241240
> potential(screened) = -0.502514
> potential(ionic) = -9.172153
>
> izeta = 2
> rmatch = 5.702400
> splitnorm = 0.552865
> energy = 0.042306
> kinetic = 0.687590
> potential(screened) = -0.645284
> potential(ionic) = -9.732488
>
> SPLIT: Orbitals with angular momentum L= 3
>
> SPLIT: Basis orbitals for state 4f
>
> izeta = 1
> lambda = 1.000000
> rc = 6.964935
> energy = -0.251906
> kinetic = 8.040232
> potential(screened) = -8.292139
> potential(ionic) = -23.259849
>
> izeta = 2
> rmatch = 5.702400
> splitnorm = 0.000455
> energy = -0.251408
> kinetic = 8.068044
> potential(screened) = -8.319452
> potential(ionic) = -23.307249
>
> POLgen: Perturbative polarization orbital with L= 1
>
> POLgen: Polarization orbital for state 6s
>
> izeta = 1
> rc = 6.964935
> energy = -0.049206
> kinetic = 0.458911
> potential(screened) = -0.508117
> potential(ionic) = -8.638323
>
> POLgen: Perturbative polarization orbital with L= 4
>
> POLgen: Polarization orbital for state 4f
>
> izeta = 1
> rc = 6.964935
> energy = 3.369074
> kinetic = 10.268329
> potential(screened) = -6.899255
> potential(ionic) = -21.197479
> atom: Total number of Sankey-type orbitals: 28
>
> atm_pop: Valence configuration(local Pseudopot. screening):
> 6s( 2.00)
> 6p( 0.00)
> 5d( 0.00)
> 4f(13.00)
> Vna: chval, zval: 15.00000 15.00000
>
> Vna: Cut-off radius for the neutral-atom potential: 6.964935
>
> atom:
>
_________________________________________________________________________
>
>
>
===============================================================================
> Se Z= 34 Mass= 78.960 Charge= 0.00000
> Lmxo=1 Lmxkb=2 BasisType=split Semic=F
> L=0 Nsemic=0 Cnfigmx=4
> n=1 nzeta=2 polorb=0
> vcte: 0.00000
> rinn: 0.00000
> rcs: 5.6448 3.0291
> lambdas: 1.0000 1.0000
> L=1 Nsemic=0 Cnfigmx=4
> n=1 nzeta=2 polorb=0
> vcte: 0.00000
> rinn: 0.00000
> rcs: 7.2586 2.8555
> lambdas: 1.0000 1.0000
>
-------------------------------------------------------------------------------
> L=0 Nkbl=1 erefs: 0.17977+309
> L=1 Nkbl=1 erefs: 0.17977+309
> L=2 Nkbl=1 erefs: 0.17977+309
>
===============================================================================
>
>
> atom: Called for Se (Z = 34)
>
> read_vps: Pseudopotential generation method:
> read_vps: ATM 3.2.2 Troullier-Martins
>
> read_vps: Pseudopotential generated from a relativistic atomic calculation
> read_vps: There are spin-orbit pseudopotentials available
> read_vps: Spin-orbit interaction is not included in this calculation
>
> read_vps: Valence configuration (pseudopotential and basis set
generation):
> 4s( 2.00) rc: 1.80
> 4p( 4.00) rc: 2.09
> 4d( 0.00) rc: 1.89
> Total valence charge: 6.00000
>
> xc_check: Exchange-correlation functional:
> xc_check: Ceperley-Alder
> V l=0 = -2*Zval/r beyond r= 3.1935
> V l=1 = -2*Zval/r beyond r= 3.1935
> V l=2 = -2*Zval/r beyond r= 3.1935
> All V_l potentials equal beyond r= 2.0619
> This should be close to max(r_c) in ps generation
> All pots = -2*Zval/r beyond r= 3.1935
> Using large-core scheme for Vlocal
>
> atom: Estimated core radius 3.19350
>
> atom: Including non-local core corrections could be a good idea
> atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 3.52937
> atom: Maximum radius for r*vlocal+2*Zval: 3.23367
> GHOST: No ghost state for L = 0
> GHOST: No ghost state for L = 1
> GHOST: No ghost state for L = 2
>
> KBgen: Kleinman-Bylander projectors:
> l= 0 rc= 2.140641 el= -1.282149 Ekb= 7.514714 kbcos= 0.238681
> l= 1 rc= 2.140641 el= -0.489584 Ekb= 2.689557 kbcos= 0.242169
> l= 2 rc= 2.140641 el= 0.002371 Ekb= 7.497228 kbcos= 0.019395
>
> KBgen: Total number of Kleinman-Bylander projectors: 9
> atom:
>
-------------------------------------------------------------------------
>
> atom: SANKEY-TYPE ORBITALS:
> atom: Selected multiple-zeta basis: split
>
> SPLIT: Orbitals with angular momentum L= 0
>
> SPLIT: Basis orbitals for state 4s
>
> izeta = 1
> lambda = 1.000000
> rc = 5.746706
> energy = -1.281402
> kinetic = 0.781756
> potential(screened) = -2.063158
> potential(ionic) = -6.675439
>
> izeta = 2
> rmatch = 3.075956
> splitnorm = 0.366048
> energy = -0.797323
> kinetic = 1.874138
> potential(screened) = -2.671461
> potential(ionic) = -7.590957
>
> SPLIT: Orbitals with angular momentum L= 1
>
> SPLIT: Basis orbitals for state 4p
>
> izeta = 1
> lambda = 1.000000
> rc = 7.378937
> energy = -0.488435
> kinetic = 1.123771
> potential(screened) = -1.612206
> potential(ionic) = -5.763251
>
> izeta = 2
> rmatch = 2.853693
> splitnorm = 0.582656
> energy = 0.370860
> kinetic = 2.968627
> potential(screened) = -2.597767
> potential(ionic) = -7.551113
> atom: Total number of Sankey-type orbitals: 8
>
> atm_pop: Valence configuration(local Pseudopot. screening):
> 4s( 2.00)
> 4p( 4.00)
> Vna: chval, zval: 6.00000 6.00000
>
> Vna: Cut-off radius for the neutral-atom potential: 7.378937
>
> atom:
>
_________________________________________________________________________
>
> prinput: Basis input
>
----------------------------------------------------------
>
> PAO.BasisType split
>
> %block ChemicalSpeciesLabel
> 1 69 Tm # Species index, atomic number, species
> label
> 2 34 Se # Species index, atomic number, species
> label
> %endblock ChemicalSpeciesLabel
>
> %block PAO.Basis # Define Basis set
> Tm 2 # Species label, number of l-shells
> n=6 0 2 P 1 # n, l, Nzeta, Polarization, NzetaPol
> 6.965 5.702
> 1.000 1.000
> n=4 3 2 P 1 # n, l, Nzeta, Polarization, NzetaPol
> 6.965 5.702
> 1.000 1.000
> Se 2 # Species label, number of l-shells
> n=4 0 2 # n, l, Nzeta
> 5.747 3.076
> 1.000 1.000
> n=4 1 2 # n, l, Nzeta
> 7.379 2.854
> 1.000 1.000
> %endblock PAO.Basis
>
> prinput:
>
----------------------------------------------------------------------
>
>
> siesta: ******************** Simulation parameters
> ****************************
> siesta:
> siesta: The following are some of the parameters of the simulation.
> siesta: A complete list of the parameters used, including default values,
> siesta: can be found in file out.fdf
> siesta:
> coor: Atomic-coordinates input format = Fractional
> redata: Number of spin components = 1
> redata: Long output = F
> redata: Number of Atomic Species = 2
> redata: Charge density info will appear in .RHO file
> redata: Write Mulliken Pop. = Atomic and Orbital charges
> redata: Mesh Cutoff = 250.0000 Ry
> redata: Net charge of the system = 0.0000 |e|
> redata: Max. number of SCF Iter = 200
> redata: Performing Pulay mixing using = 8 iterations
> redata: Mix DM in first SCF step ? = F
> redata: Write Pulay info on disk? = F
> redata: New DM Mixing Weight = 0.3000
> redata: New DM Occupancy tolerance = 0.000000000001
> redata: No kicks to SCF
> redata: DM Mixing Weight for Kicks = 0.5000
> redata: DM Tolerance for SCF = 0.000100
> redata: Require Energy convergence for SCF = F
> redata: DM Energy tolerance for SCF = 0.000100 eV
> redata: Using Saved Data (generic) = F
> redata: Use continuation files for DM = F
> redata: Neglect nonoverlap interactions = F
> redata: Method of Calculation = Diagonalization
> redata: Divide and Conquer = F
> redata: Electronic Temperature = 0.0022 Ry
> redata: Fix the spin of the system = F
> redata: Dynamics option = CG coord. optimization
> redata: Variable cell = T
> redata: Use continuation files for CG = F
> redata: Max atomic displ per move = 0.7559 Bohr
> redata: Maximum number of CG moves = 180
> redata: Force tolerance = 0.0004 Ry/Bohr
> redata: Stress tolerance = 0.1000 GPa
> redata:
>
***********************************************************************
>
> siesta: Atomic coordinates (Bohr) and species
> siesta: 0.00000 0.00000 0.00000 1 1
> siesta: 5.37627 5.37627 5.37627 2 2
>
> initatomlists: Number of atoms, orbitals, and projectors: 2 36 25
>
> siesta: System type = bulk
>
> * ProcessorY, Blocksize: 1 24
>
>
> siesta: k-grid: Number of k-points = 1008
> siesta: k-grid: Cutoff = 24.141 Ang
> siesta: k-grid: Supercell and displacements
> siesta: k-grid: 12 0 0 0.000
> siesta: k-grid: 0 12 0 0.000
> siesta: k-grid: 0 0 12 0.000
>
> superc: Internal auxiliary supercell: 7 x 7 x 7 = 343
> superc: Number of atoms, orbitals, and projectors: 686 12348 8575
>
> * Maximum dynamic memory allocated = 2 MB
>
> siesta: ==============================
> Begin CG move = 0
> ==============================
>
> superc: Internal auxiliary supercell: 7 x 7 x 7 = 343
> superc: Number of atoms, orbitals, and projectors: 686 12348 8575
>
> outcell: Unit cell vectors (Ang):
> 2.845000 2.845000 0.000000
> 2.845000 0.000000 2.845000
> 0.000000 2.845000 2.845000
>
> outcell: Cell vector modules (Ang) : 4.023438 4.023438 4.023438
> outcell: Cell angles (23,13,12) (deg): 60.0000 60.0000 60.0000
> outcell: Cell volume (Ang**3) : 46.0550
>
> InitMesh: MESH = 32 x 32 x 32 = 32768
> InitMesh: Mesh cutoff (required, used) = 250.000 262.240 Ry
>
> * Maximum dynamic memory allocated = 66 MB
>
> stepf: Fermi-Dirac step function
>
> siesta: Program's energy decomposition (eV):
> siesta: Eions = 1578.050130
> siesta: Ena = -128022.794811
> siesta: Ekin = 1511.164452
> siesta: Enl = -1682.384356
> siesta: DEna = 0.000000
> siesta: DUscf = 0.000000
> siesta: DUext = 0.000000
> siesta: Exc = -274.846537
> siesta: eta*DQ = 0.000000

=== message truncated ===



 ________________________________
 Here�s a new way to find what you're looking for - Yahoo! Answers




--
Yurko Natanzon
PhD Student
Henryk Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences
ul. Radzikowskiego 152,
31-342 Kraków, Poland
Email: [EMAIL PROTECTED], [EMAIL PROTECTED]

Reply via email to