Dear All,

Thank you very much for your time!

I am puzzled about the set of LatticeVectors in the input file. Maybe the 
fellow question is too simple, but it's really a problem for me to understand 
it.
For example, when you do a bulk calculation of Au leads (111). What do you 
think the difference between the different set of lattice vectors, set as 
follow.

one: 
%block LatticeVectors
  9.571313000   0.000000000   0.0000000000
  0.000000000   14.01989100   0.0000000000
  0.000000000    0.000000000  7.0691600000
%endblock LatticeVectors

second:
%block LatticeVectors
   4.3289600000 -8.4979700000  0.0000000000
   4.3289600000  8.4979700000  0.0000000000
   0.0000000000  0.0000000000  7.0691600000
%endblock LatticeVectors

As we known that the Au is FCC, it seems that the second choice is better. But 
as in some case, we select some part of system, for example Au, to represent 
the period structure of bulk system. What's the physical view of this kind? 
Could you give some explain? 

Thank you very much in advace!
Jackie Wan,


The input file:
=============================================
# Sample file for programs SIESTA
SystemName    Au-lead  # Descriptive name of the system
SystemLabel    Au           # Short name for naming files
NumberOfAtoms     27   # Number of atoms
NumberOfSpecies   1      # Number of species
PAO.BasisType   split     # Type of basis ('nones', 'nonodes', 'split')
PAO.SplitNorm   0.15    # Amount of norm carried by the second zeta
%block ChemicalSpeciesLabel
 1   79  Au
%endblock ChemicalSpeciesLabel
%block PAO.Basis
 Au  1
n=6  0  1
 6.0
%endblock PAO.Basis
LatticeConstant         1.0 Ang
%block LatticeVectors
   4.3289600000 -8.4979700000  0.0000000000
   4.3289600000  8.4979700000  0.0000000000
   0.0000000000  0.0000000000  7.0691600000
%endblock LatticeVectors
AtomicCoordinatesFormat Ang
%block AtomicCoordinatesAndAtomicSpecies
   1.4429860000  0.8331080000  0.0000000000 1
   2.8859710000 -1.6662140000  0.0000000000 1
   4.3289560000 -4.1655360000  0.0000000000 1
   2.8859710000  3.3324300000  0.0000000000 1
   4.3289560000  0.8331080000  0.0000000000 1
   5.7719410000 -1.6662140000  0.0000000000 1
   4.3289560000  5.8317520000  0.0000000000 1
   5.7719410000  3.3324300000  0.0000000000 1
   7.2149260000  0.8331080000  0.0000000000 1
   1.4429860000 -0.8331080000  2.3563870000 1
   2.8859710000 -3.3324300000  2.3563870000 1
   4.3289560000 -5.8317520000  2.3563870000 1
   2.8859710000  1.6662140000  2.3563870000 1
   4.3289560000 -0.8331080000  2.3563870000 1
   5.7719410000 -3.3324300000  2.3563870000 1
   4.3289560000  4.1655360000  2.3563870000 1
   5.7719410000  1.6662140000  2.3563870000 1
   7.2149260000 -0.8331080000  2.3563870000 1
   0.0000000000  0.0000000000  4.7127680000 1
   1.4429850000 -2.4993220000  4.7127680000 1
   2.8859700000 -4.9986440000  4.7127680000 1
   1.4429850000  2.4993220000  4.7127680000 1
   2.8859700000  0.0000000000  4.7127680000 1
   4.3289550000 -2.4993220000  4.7127680000 1
   2.8859700000  4.9986440000  4.7127680000 1
   4.3289550000  2.4993220000  4.7127680000 1
   5.7719400000  0.0000000000  4.7127680000 1
%endblock AtomicCoordinatesAndAtomicSpecies

%block kgrid_Monkhorst_Pack
 2   0   0    0.0
 0   2   0    0.0
 0   0   3    0.0
%endblock kgrid_Monkhorst_Pack
BandLinesScale  ReciprocalLatticeVectors
xc.functional   GGA  # 'LDA', 'GGA'
xc.authors     PBE  #'CA'='PZ', 'PW92', 'PBE'
SpinPolarized   F  # 'T', 'F'
FixSpin             F
TotalSpin          0.0
NonCollinearSpin  F  # 'T', 'F'
MeshCutoff     180. Ry  # Equivalent plane wave cutoff for the grid
MaxSCFIterations  300
DM.MixingWeight   0.05
DM.Tolerance    1.0E-5
NeglNonOverlapInt  T  # 'F'=do not neglect
SolutionMethod   diagon
ElectronicTemperature  300 K  # Default value
============================================== end of input file



      

Responder a