Pseudopotentials depend on the original functional and not on the "+U"
value. You can find several peudopotentials here
http://charter.cnf.cornell.edu/dd_search.php?frmxcprox=&frmxctype=&frmspclass=TM
or here (for GGA pseudopotentials)
http://departments.icmab.es/leem/siesta/Databases/Pseudopotentials/periodictable-gga-abinit.html
or you can create your own one (if you know how to) using the program atom.


> Hello sir
> I am doing calculations for Mn using lda+u . I got the problem with pseudo
> potential of Mn. If u have the pseudo potential for Mn compatible with
> lda+u.plz send me.
> On 15 Mar 2015 10:47, <fthe...@iesl.forth.gr> wrote:
>
>> Same problem for me, but never resolved....
>>
>>
>> > Dear Siesta users and developers,
>> >
>> >
>> >
>> > I want to do some LDA+U calculations by the ldau version of siesta. I
>> > compiled it with the same makefile as I used for siesta-3.2. I have
>> tested
>> > the example of Fe_ldau in the subdirectory of Siesta. However, it
>> turned
>> > out
>> > that when I use only 1 core  the execution is successful but if I use
>> more
>> > cores the code seems pausing at the following lines not moving on but
>> it
>> > never stops prompted an error.  By the way, I can run normal
>> calculations
>> > without LDA+U with the ldau version of siesta with many cores
>> > successfully.
>> > So, What is the problem? Any advice and comment  will be appreciated.
>> >
>> >
>> >
>> > Siesta Version:
>> > siesta-2.6.8--ldau-reference-6-dm-fix
>> >
>> > Architecture  : x86_64-unknown-linux-gnu--Intel
>> >
>> > Compiler flags: mpif90 -g -O2
>> >
>> > PARALLEL version
>> >
>> >
>> >
>> > * Running on    3 nodes in parallel
>> >
>> >>> Start of run:  14-MAR-2015  17:39:52
>> >
>> >
>> >
>> >                            ***********************
>> >
>> >                            *  WELCOME TO SIESTA  *
>> >
>> >                            ***********************
>> >
>> >
>> >
>> > reinit: Reading from standard input
>> >
>> > ************************** Dump of input data file
>> > ****************************
>> >
>> > # $Id: Fe.fdf,v 1.1 1999/04/20 12:52:43 emilio Exp $
>> >
>> > #
>> >
>> ----------------------------------------------------------------------------
>> > -
>> >
>> > # FDF for bcc iron
>> >
>> > #
>> >
>> > # GGA, Ferromagnetic.
>> >
>> > # Scalar-relativistic pseudopotential with non-linear partial-core
>> > correction
>> >
>> > #
>> >
>> > # E. Artacho, April 1999
>> >
>> > #
>> >
>> ----------------------------------------------------------------------------
>> > -
>> >
>> > SystemName       bcc Fe ferro GGA   # Descriptive name of the system
>> >
>> > SystemLabel            Fe           # Short name for naming files
>> >
>> > # Output options
>> >
>> > WriteCoorStep
>> >
>> > WriteMullikenPop       1
>> >
>> > # Species and atoms
>> >
>> > NumberOfSpecies        1
>> >
>> > NumberOfAtoms          1
>> >
>> > %block ChemicalSpeciesLabel
>> >
>> >   1  26  Fe
>> >
>> > %endblock ChemicalSpeciesLabel
>> >
>> > # Basis
>> >
>> > PAO.EnergyShift       50 meV
>> >
>> > PAO.BasisSize         DZP
>> >
>> > %block PAO.Basis
>> >
>> >   Fe  2
>> >
>> >   0  2  P
>> >
>> >   6. 0.
>> >
>> >   2  2
>> >
>> >   0. 0.
>> >
>> > %endblock PAO.Basis
>> >
>> > LatticeConstant       2.87 Ang
>> >
>> > %block LatticeVectors
>> >
>> > 0.50000   0.500000  0.500000
>> >
>> > 0.50000  -0.500000  0.500000
>> >
>> > 0.50000   0.500000 -0.500000
>> >
>> > %endblock LatticeVectors
>> >
>> > KgridCutoff          15. Ang
>> >
>> > %block BandLines
>> >
>> >   1  0.00000   0.000000  0.000000  \Gamma
>> >
>> > 40  2.00000   0.000000  0.000000  H
>> >
>> > 28  1.00000   1.000000  0.000000  N
>> >
>> > 28  0.00000   0.000000  0.000000  \Gamma
>> >
>> > 34  1.00000   1.000000  1.000000  P
>> >
>> > %endblock BandLines
>> >
>> > xc.functional         GGA           # Exchange-correlation functional
>> >
>> > xc.authors            PBE           # Exchange-correlation version
>> >
>> > SpinPolarized         true          # Logical parameters are: yes or
>> no
>> >
>> > MeshCutoff           150. Ry        # Mesh cutoff. real space mesh
>> >
>> > # SCF options
>> >
>> > MaxSCFIterations       40           # Maximum number of SCF iter
>> >
>> > DM.MixingWeight       0.1           # New DM amount for next SCF cycle
>> >
>> > DM.Tolerance          1.d-3         # Tolerance in maximum difference
>> >
>> >                                     # between input and output DM
>> >
>> > DM.UseSaveDM          true          # to use continuation files
>> >
>> > DM.NumberPulay         3
>> >
>> > SolutionMethod        diagon        # OrderN or Diagon
>> >
>> > ElectronicTemperature  25 meV       # Temp. for Fermi smearing
>> >
>> > # MD options
>> >
>> > MD.TypeOfRun           cg           # Type of dynamics:
>> >
>> > MD.NumCGsteps           0           # Number of CG steps for
>> >
>> >                                     #   coordinate optimization
>> >
>> > MD.MaxCGDispl          0.1 Ang      # Maximum atomic displacement
>> >
>> >                                     #   in one CG step (Bohr)
>> >
>> > MD.MaxForceTol         0.04 eV/Ang  # Tolerance in the maximum
>> >
>> >                                     #   atomic force (Ry/Bohr)
>> >
>> > # Atomic coordinates
>> >
>> > AtomicCoordinatesFormat     Fractional
>> >
>> > %block AtomicCoordinatesAndAtomicSpecies
>> >
>> >   0.000000000000    0.000000000000    0.000000000000  1
>> >
>> > %endblock AtomicCoordinatesAndAtomicSpecies
>> >
>> > LDAU.FirstIteration .false.
>> >
>> > LDAU.PopTol 5.0d-4
>> >
>> > LDAU.ThresholdTol   1.0d-2
>> >
>> > LDAU.ProjectorGenerationMethod 2
>> >
>> > %block LDAU.proj
>> >
>> > Fe   1           # number of shells of projectors
>> >
>> > n=3    2         #  n, l
>> >
>> >    2.00 0.0000    # U(eV), J(eV)
>> >
>> >    0.000 0.0000  # rc, \omega
>> >
>> > %endblock LDAU.proj
>> >
>> > ************************** End of input data file
>> > *****************************
>> >
>> >
>> >
>> > reinit:
>> > -----------------------------------------------------------------------
>> >
>> > reinit: System Name: bcc Fe ferro GGA
>> >
>> > reinit:
>> > -----------------------------------------------------------------------
>> >
>> > reinit: System Label: Fe
>> >
>> >
>> > reinit:
>> > -----------------------------------------------------------------------
>> >
>> >
>> >
>> > initatom: Reading input for thepseudopotentials and atomic orbitals
>> >
>> > Species number:            1  Label: Fe Atomic number:          26
>> >
>> > Ground state valence configuration:   4s02  3d06
>> >
>> > Reading pseudopotential information in formatted form from Fe.psf
>> >
>> >
>> >
>> > Valence configuration for pseudopotential generation:
>> >
>> > 4s( 2.00) rc: 2.41
>> >
>> > 4p( 0.00) rc: 2.53
>> >
>> > 3d( 6.00) rc: 2.29
>> >
>> > 4f( 0.00) rc: 2.29
>> >
>> >
>> >
>> > Repaobasis: processing %block PAO.Basis
>> >
>> > Repaobasis: species: Fe
>> >
>> > Repaobasis:  Number of shells= 2
>> >
>> > Repaobasis:     Shell with n,l= 4 0
>> >
>> > Repaobasis:     Shell with n,l= 3 2
>> >
>> > For Fe, standard SIESTA heuristics set lmxkb to 3
>> >
>> > (one more than the basis l, including polarization orbitals).
>> >
>> > Use PS.lmax or PS.KBprojectors blocks to override.
>> >
>> >
>> >
>> > Reldauproj: processing %block LDAU.proj
>> >
>> > Reldauproj: species: Fe
>> >
>> > Reldauproj:  Number of shells= 1
>> >
>> > Reldauproj:     Shell with n,l= 3 2
>> >
>> > Reldauproj: end processing %block LDAU.proj
>> >
>> >
>> >
>> > <basis_specs>
>> >
>> >
>> ============================================================================
>> > ===
>> >
>> >                                                                      =
>> >
>> > Fe         Z=  26    Mass=  55.850        Charge=  0.0000
>> >
>> > Lmxo=2 Lmxkb= 3     BasisType=split      Semic=F
>> >
>> > L=0  Nsemic=0
>> >
>> >           n=4  nzeta=2  polorb= F
>> >
>> >             splnorm:   0.15000
>> >
>> >                vcte:    0.0000
>> >
>> >                rinn:    0.0000
>> >
>> >                 rcs:    6.0000      0.0000
>> >
>> >             lambdas:    1.0000      1.0000
>> >
>> > L=1  Nsemic=0
>> >
>> >           n=4  nzeta=1  polorb= T
>> >
>> >             splnorm:   0.15000
>> >
>> >                vcte:    0.0000
>> >
>> >                rinn:    0.0000
>> >
>> >                 rcs:    0.0000
>> >
>> >             lambdas:    1.0000
>> >
>> > L=2  Nsemic=0
>> >
>> >           n=3  nzeta=2  polorb= F
>> >
>> >             splnorm:   0.15000
>> >
>> >                vcte:    0.0000
>> >
>> >                rinn:    0.0000
>> >
>> >                 rcs:    0.0000      0.0000
>> >
>> >             lambdas:    1.0000      1.0000
>> >
>> >                                                                      -
>> >
>> > L=0  Nkbl=1  erefs: 0.17977+309
>> >
>> > L=1  Nkbl=1  erefs: 0.17977+309
>> >
>> > L=2  Nkbl=1  erefs: 0.17977+309
>> >
>> > L=3  Nkbl=1  erefs: 0.17977+309
>> >
>> >                                                                      -
>> >
>> > L=2  Nldau_semic=1
>> >
>> >           n=3
>> >
>> >               U, J=:   0.14700      0.0000
>> >
>> >                vcte:    0.0000
>> >
>> >                rinn:    0.0000
>> >
>> >                 rcs:    0.0000
>> >
>> >             lambdas:    1.0000
>> >
>> >                                                                      =
>> >
>> > </basis_specs>
>> >
>> >
>> >
>> > ATOM: Species begin__________________________
>> >
>> > ATOM: Called for Fe                    (Z =  26)
>> >
>> >
>> >
>> > read_Read: Pseudopotential generation method:
>> >
>> > read_vps: ATM 3.2.2 Troullier-Martins
>> >
>> > Total valence charge:    8.00000
>> >
>> >
>> >
>> > ATOM: Pseudopotential generated from an ionic configuration
>> >
>> > ATOM: with net charge 0.00
>> >
>> >
>> >
>> > xc_check: Exchange-correlation functional:
>> >
>> > xc_check: GGA Perdew, Burke & Ernzerhof 1996
>> >
>> > V l=0 =-2*Zval/r beyond r=  2.3499
>> >
>> > V l=1 =-2*Zval/r beyond r=  2.4704
>> >
>> > V l=2 =-2*Zval/r beyond r=  2.2353
>> >
>> > V l=3 =-2*Zval/r beyond r=  2.2353
>> >
>> > All V_l potentials equal beyond r=  2.4704
>> >
>> > This should be close to max(r_c) in ps generation
>> >
>> > All pots = -2*Zval/r beyond r=  2.4704
>> >
>> >
>> >
>> > VLOCAL1: 99.0% of the norm of Vloc inside      7.113 Ry
>> >
>> > VLOCAL1: 99.9% of the norm of Vloc inside     16.210 Ry
>> >
>> > ATOM: Maximum radius for  4*pi*r*r*local-pseudopot. charge    2.97985
>> >
>> > atom: Maximum radius for r*vlocal+2*Zval:    2.87017
>> >
>> >
>> >
>> > --------------------------------------------
>> >
>> > KB: Generation of KB projectors
>> >
>> > KB:  L=           0
>> >
>> > KB:    Number of Kleinman-Bylander projectors: 1
>> >
>> > KB:       Generating projector: 1
>> >
>> > KB:          Projector kind: standard
>> >
>> > radial_log schro: updating the rc to:   25.5822751650800
>> >
>> >      GHOST: No ghost state for L =  0
>> >
>> > KB:  L=           1
>> >
>> > KB:    Number of Kleinman-Bylander projectors: 1
>> >
>> > KB:       Generating projector: 1
>> >
>> > KB:          Projector kind: standard
>> >
>> > radial_log schro: updating the rc to:   46.6140229130900
>> >
>> >      GHOST: No ghost state for L =  1
>> >
>> > KB:  L=           2
>> >
>> > KB:    Number of Kleinman-Bylander projectors: 1
>> >
>> > KB:       Generating projector: 1
>> >
>> > KB:          Projector kind: standard
>> >
>> > radial_log schro: updating the rc to:   18.9517908592700
>> >
>> >      GHOST: No ghost state for L =  2
>> >
>> > KB:  L=           3
>> >
>> > KB:    Number of Kleinman-Bylander projectors: 1
>> >
>> > KB:       Generating projector: 1
>> >
>> > KB:          Projector kind: standard
>> >
>> > radial_log schro: updating the rc to:   120.530480482200
>> >
>> >      GHOST: No ghost state for L =  3
>> >
>> >
>> >
>> > KBgen: Kleinman-Bylander projectors:
>> >
>> >    l= 0   rc=  2.764525   el= -0.389815   Ekb=  3.431041   kbcos=
>> > 0.254043
>> >
>> >    l= 1   rc=  2.799300   el= -0.098222   Ekb=  1.732346   kbcos=
>> > 0.192007
>> >
>> >    l= 2   rc=  2.564764   el= -0.551796   Ekb=-12.271205   kbcos=
>> > -0.715516
>> >
>> >    l= 3   rc=  2.870167   el=  0.003006   Ekb= -1.371972   kbcos=
>> > 0.000000
>> >
>> >
>> >
>> > KBgen: Total number of  Kleinman-Bylander projectors:   16
>> >
>> >
>> >
>> > --------------------------------------------
>> >
>> >
>> >
>> > BASIS_GEN begin
>> >
>> >
>> >
>> > SPLIT: Orbitals with angular momentum L= 0
>> >
>> >
>> >
>> > SPLIT: Basis orbitals for state 4s
>> >
>> > radial_log schro: updating the rc to:   6.00076868208500
>> >
>> >
>> >
>> >    izeta = 1
>> >
>> >                  lambda =    1.000000
>> >
>> >                      rc =    6.000769
>> >
>> >            Total energy =   -0.361656
>> >
>> >                 kinetic =    0.369283
>> >
>> >     potential(screened) =   -0.730939
>> >
>> >        potential(ionic) =   -6.228540
>> >
>> >
>> >
>> >    izeta = 2
>> >
>> >                  rmatch =    5.926225
>> >
>> >               splitnorm =    0.150000
>> >
>> >            Total energy =   -0.304336
>> >
>> >                 kinetic =    0.545465
>> >
>> >     potential(screened) =   -0.849801
>> >
>> >        potential(ionic) =   -6.653009
>> >
>> >
>> >
>> > POLgen: Polarization orbital for state 4s
>> >
>> >
>> >
>> >    izeta = 1
>> >
>> >                  lambda =    1.000000
>> >
>> >                      rc =    6.000769
>> >
>> >            Total energy =    0.018885
>> >
>> >                 kinetic =    0.674242
>> >
>> >     potential(screened) =   -0.655358
>> >
>> >        potential(ionic) =   -5.783059
>> >
>> >
>> >
>> > SPLIT: Orbitals with angular momentum L= 2
>> >
>> > radial_log schro: updating the rc to:   18.9517908592700
>> >
>> >
>> >
>> > SPLIT: PAO cut-off radius determinated from an
>> >
>> > SPLIT: energy shift=  0.003675 Ry
>> >
>> >
>> >
>> > SPLIT: Basis orbitals for state 3d
>> >
>> > radial_log schro: updating the rc to:   4.79169190888500
>> >
>> >
>> >
>> >    izeta = 1
>> >
>> >                  lambda =    1.000000
>> >
>> >                      rc =    4.791692
>> >
>> >            Total energy =   -0.548667
>> >
>> >                 kinetic =    8.561292
>> >
>> >     potential(screened) =   -9.109958
>> >
>> >        potential(ionic) =  -18.089190
>> >
>> >
>> >
>> >    izeta = 2
>> >
>> >                  rmatch =    2.291856
>> >
>> >               splitnorm =    0.150000
>> >
>> >            Total energy =   -0.137047
>> >
>> >                 kinetic =   11.793848
>> >
>> >     potential(screened) =  -11.930895
>> >
>> >        potential(ionic) =  -21.624702
>> >
>> >
>> >
>> > Basis: Total Species Charge =        8.0000
>> >
>> > Basis: Species Exc (eV) =     -105.1478
>> >
>> >
>> >
>> > BASISgen end
>> >
>> >
>> >
>> > LDAUprojgen begin
>> >
>> >
>> >
>> > LDAUprojs with angular momentum L= 2
>> >
>> > LDAUproj generation method   2
>> >
>> >
>> >
>> > LDAUproj corresponding to state 3d
>> >
>> > radial_log schro: updating the rc to:   18.9517908592700
>> >
>> > LDAUproj cut-off radious determined from a
>> >
>> > cutoff norm parameter =     0.900000
>> >
>> > LDAUproj is an extended PAO orbital cut off with a
>> >
>> > Fermi function 1/[1+exp(r-rc)/w] with
>> >
>> > rc=    2.022544
>> >
>> > w =    0.050000
>> >
>> > LDAUproj cutoff radious     2.320685
>> >
>> >
>> >
>> > LDAUprojgen end
>> >
>> >
>> >
>> > ATOM: Species end_____________________________
>> >
>> >  na: Computing Vna for species            1
>> >
>> >      Vna: chval, zval:    8.00000   8.00000
>> >
>> >
>> >
>> > Vna:  Cut-off radius for the neutral-atom potential:   6.000769
>> >
>> > na: Finished computing Vna for species            1
>> >
>> >
>> >
>> > prinput: Basis input
>> > ----------------------------------------------------------
>> >
>> >
>> >
>> > PAO.BasisType split
>> >
>> >
>> >
>> > %block ChemicalSpeciesLabel
>> >
>> >     1   26 Fe                      # Species index, atomic number,
>> species
>> > label
>> >
>> > %endblock ChemicalSpeciesLabel
>> >
>> >
>> >
>> > %block PAO.Basis                 # Define Basis set
>> >
>> > Fe          3                    # Species label, number of l-shells
>> >
>> > n=4   0   2 P   1                   # n, l, Nzeta, Polarization,
>> NzetaPol
>> >
>> >    6.001      5.926
>> >
>> >    1.000      1.000
>> >
>> >  n=3   2   2                         # n, l, Nzeta
>> >
>> >    4.792      2.292
>> >
>> >    1.000      1.000
>> >
>> > %endblock PAO.Basis
>> >
>> >
>> >
>> > prinput:
>> > ----------------------------------------------------------------------
>> >
>> >
>> >
>> > coor:   Atomic-coordinates input format  =     Fractional
>> >
>> >
>> >
>> > siesta: Atomic coordinates (Bohr) and species
>> >
>> > siesta:      0.00000   0.00000   0.00000  1        1
>> >
>> >
>> >
>> > siesta: System type = bulk
>> >
>> >
>> >
>> > initatomlists: Number of atoms, orbitals, and projectors:      1    15
>> > 16
>> >
>> >
>> >
>> > siesta: ******************** Simulation parameters
>> > ****************************
>> >
>> > siesta:
>> >
>> > siesta: The following are some of the parameters of the simulation.
>> >
>> > siesta: A complete list of the parameters used, including default
>> values,
>> >
>> > siesta: can be found in file out.fdf
>> >
>> > siesta:
>> >
>> > redata: Non-Collinear-spin run           =     F
>> >
>> > redata: SpinPolarized (Up/Down) run      =     T
>> >
>> > redata: Number of spin components        =     2
>> >
>> > redata: Long output                      =     F
>> >
>> > redata: Maximum wall-clock time          = unlimited
>> >
>> > redata: Number of Atomic Species         =        1
>> >
>> > redata: Charge density info will appear in .RHO file
>> >
>> > redata: Write Mulliken Pop.              =     Atomic and Orbital
>> charges
>> >
>> > redata: Mesh Cutoff                      =   150.0000  Ry
>> >
>> > redata: Net charge of the system         =     0.0000 |e|
>> >
>> > redata: Max. number of SCF Iter          =       40
>> >
>> > redata: Performing Pulay mixing using    =     3 iterations
>> >
>> > redata: Mix DM in first SCF step ?       =     F
>> >
>> > redata: Write Pulay info on disk?        =     F
>> >
>> > redata: New DM Mixing Weight             =     0.1000
>> >
>> > redata: New DM Occupancy tolerance       = 0.000000000001
>> >
>> > redata: No kicks to SCF
>> >
>> > redata: DM Mixing Weight for Kicks       =     0.5000
>> >
>> > redata: DM Tolerance for SCF             =     0.001000
>> >
>> > redata: Require Energy convergence for SCF =     F
>> >
>> > redata: DM Energy tolerance for SCF      =     0.000100 eV
>> >
>> > redata: Require Harris convergence for SCF =     F
>> >
>> > redata: DM Harris energy tolerance for SCF =     0.000100 eV
>> >
>> > redata: Antiferro initial spin density   =     F
>> >
>> > redata: Using Saved Data (generic)   =     F
>> >
>> > redata: Use continuation files for DM    =     T
>> >
>> > redata: Neglect nonoverlap interactions  =     F
>> >
>> > redata: Method of Calculation            =     Diagonalization
>> >
>> > redata: Divide and Conquer               =     T
>> >
>> > redata: Electronic Temperature           =     0.0018  Ry
>> >
>> > redata: Fix the spin of the system       =     F
>> >
>> > redata: Dynamics option                  =     CG coord. optimization
>> >
>> > redata: Variable cell                    =     F
>> >
>> > redata: Use continuation files for CG    =     F
>> >
>> > redata: Max atomic displ per move        =     0.1890  Bohr
>> >
>> > redata: Maximum number of CG moves       =        0
>> >
>> > redata: Force tolerance                  =     0.0016  Ry/Bohr
>> >
>> > redata:
>> > ***********************************************************************
>> >
>> > Total number of electrons:     8.000000
>> >
>> > Total ionic charge:     8.000000
>> >
>> >
>> >
>> > * ProcessorY, Blocksize:    1   5
>> >
>> >
>> >
>> > Kpoints in:         1183 . Kpoints trimmed:         1099
>> >
>> >
>> >
>> > siesta: k-grid: Number of k-points =  1099
>> >
>> > siesta: k-grid: Cutoff (effective) =    16.156 Ang
>> >
>> > siesta: k-grid: Supercell and displacements
>> >
>> > siesta: k-grid:    0  13   0      0.000
>> >
>> > siesta: k-grid:    0   0  13      0.000
>> >
>> > siesta: k-grid:   13   0   0      0.000
>> >
>> > Naive supercell factors:     8    8    8
>> >
>> >
>> >
>> > superc: Internal auxiliary supercell:     8 x     8 x     8  =     512
>> >
>> > superc: Number of atoms, orbitals, and projectors:    512  7680  8192
>> >
>> >
>> >
>> >
>> >
>> >
>> >
>> >
>> >
>> >
>> >
>> > Best,
>> >
>> >
>> >
>> > Xiaoming Wang
>> >
>> > Postdoc
>> >
>> > Rutgers
>> >
>> >
>>
>>
>> *********************************************************
>> Dr Zacharias G. Fthenakis
>> Research Associate
>> Institute of Electronic Structure and Laser (I.E.S.L.)
>> Foundation for Research and Technology Hellas (FO.R.T.H.)
>> Vassilika Vouton P.O. Box 1527 71003 Heraklion Crete Greece
>> Phone +30 2810 391824
>> FAX   +30 2810 391305
>> webpage: http://esperia.iesl.forth.gr/~fthenak
>> **********************************************************
>>
>>
>


*********************************************************
Dr Zacharias G. Fthenakis
Research Associate
Institute of Electronic Structure and Laser (I.E.S.L.)
Foundation for Research and Technology Hellas (FO.R.T.H.)
Vassilika Vouton P.O. Box 1527 71003 Heraklion Crete Greece
Phone +30 2810 391824
FAX   +30 2810 391305
webpage: http://esperia.iesl.forth.gr/~fthenak
**********************************************************

Responder a