Tamas’s reply is correct, I just want to add a reminder of the fact
that atomic charges have a fundamental definition problem and none of
the proposals gives the ‘good’ answer. This is a direct consequence
of its responding to an ill-posed question: how many electrons ‘belong’
to a given atom (or can be assigned to it). It is perfectly defined if the atoms
are infinitely separated from each other, but not otherwise.

It is clear, however, that concepts like charge transfer etc are useful
in chemistry and very much support chemical analysis and intuition.
Atomic charges schemes (when used sensibly) are valuable. Just remember
to use them with care (qualitatively, trends etc). There are good comparative
studies assessing their reliability in various chemistry situations.

There are situations for which the question can be rephrased
into something physically well defined (see e,g, the Born effective
charges, or other questions relating to dielectric polarisation).

One can also find claims in the literature for a particular scheme to be
the ‘right’ one. To my mind they all rely on arbitrary choices, which can
be more or less sensible or well motivated, but still arbitrary (as Tamas
says, some depend on the basis set choice while other do not, for
instance).

best

Emilio

On Jun 19, 2022, at 2:47 PM, Tamas Karpati 
<tkarp...@gmail.com<mailto:tkarp...@gmail.com>> wrote:

Dear Camps,

Please note that an argument is going on for decades about how to
calculate atomic charges. Different methods/schemes give different
results, each is giving better/worse results for different
applications. It is recommended to check how well each performs at
your actual problem and choose which one is to be used. Also
remarkable is the basis set dependence of atomic charges, consider
this a parameter to be calibrated.

Regards,
 t

On Fri, Jun 17, 2022 at 10:02 PM I. Camps 
<ica...@gmail.com<mailto:ica...@gmail.com>> wrote:

Hello Alberto,

Here it is the info about the SIESTA version:

Siesta Version  : siesta-max-R3--710-676-597
Architecture    : unknown
Compiler version: ifort (IFORT) 19.1.1.217 20200306
Compiler flags  : mpifort -fPIC -O2 -march=core-avx2 -axCore-AVX512 -fp-model 
precise
PP flags        : -DFC_HAVE_ABORT -DF2003 -DMPI -DCDF -DNCDF -DNCDF_4 
-DNCDF_PARALLEL 
-I/cvmfs//soft.computecanada.ca/easybuild/software/2020/avx2/MPI/intel2020/openmpi4/netcdf-fortran-mpi/4.5.2/include<http://soft.computecanada.ca/easybuild/software/2020/avx2/MPI/intel2020/openmpi4/netcdf-fortran-mpi/4.5.2/include>
Libraries       : libncdf.a libfdict.a -Wl,-Bstatic -Wl,--start-group 
-lmkl_scalapack_lp64 -lmkkl_blacs_openmpi_lp64 -lmkl_intel_lp64 
-lmkl_sequential -lmkl_core -Wl,--end-group -Wl,-Bdynamic -lnetcdff
PARALLEL version
NetCDF support
NetCDF-4 support
NetCDF-4 MPI-IO support

And here is the output section:

siesta: Final energy (eV):
siesta:  Band Struct. =   -8272.290139
siesta:       Kinetic =   19960.524774
siesta:       Hartree =  151423.860682
siesta:       Eldau   =       0.000000
siesta:       Eso     =       0.000000
siesta:    Ext. field =       0.000000
siesta:       Enegf   =       0.000000
siesta:   Exch.-corr. =  -11180.064205
siesta:  Ion-electron = -320401.282309
siesta:       Ion-ion =  129282.468462
siesta:       Ekinion =       0.000000
siesta:         Total =  -30914.492596
siesta:         Fermi =      -4.212218

siesta: Stress tensor (static) (eV/Ang**3):
siesta:     0.000126    0.000000   -0.000000
siesta:     0.000000    0.000101   -0.000049
siesta:    -0.000000   -0.000049   -0.016465

siesta: Cell volume =       7672.635004 Ang**3

siesta: Pressure (static):
siesta:                Solid            Molecule  Units
siesta:           0.00005895          0.00005941  Ry/Bohr**3
siesta:           0.00541292          0.00545494  eV/Ang**3
siesta:           8.67254766          8.73987328  kBar
(Free)E+ p_basis*V_orbitals  =      -30859.763440
(Free)Eharris+ p_basis*V_orbitals  =      -30859.763491
    spin moment: S , {S} =    0.00000       0.0       0.0   0.00000

siesta: Electric dipole (a.u.)  =    0.000000    0.043246    0.000000
siesta: Electric dipole (Debye) =    0.000001    0.109919    0.000000

Hirshfeld Net Atomic Populations:
Atom #    Qatom  Species
    1    0.149  B
    2    0.149  B
    3    0.149  B
    4    0.149  B
    5   -0.149  N
...
  155   -0.149  N
  156   -0.149  N
  157    0.149  B
  158    0.149  B
  159    0.149  B
  160    0.149  B

Voronoi Net Atomic Populations:
Atom #    Qatom  Species
    1    0.167  B
    2    0.167  B
    3    0.167  B
    4    0.167  B
    5   -0.168  N
...
  155   -0.168  N
  156   -0.168  N
  157    0.168  B
  158    0.168  B
  159    0.168  B
  160    0.168  B
Bader Analysis core-charge setup. Radii (standard, H):  1.000 0.600

dhscf: Vacuum level (max, mean) =   -0.038479   -0.112800 eV

siesta: LDOS info
siesta: E1 -- E2 [eV]:  -20.000 --    0.000

Hirshfeld Net Atomic Populations:
Atom #    Qatom  Species
    1    0.227  B
    2    0.227  B
    3    0.227  B
    4    0.227  B
    5    0.888  N
...
  155    0.886  N
  156    0.885  N
  157    0.227  B
  158    0.227  B
  159    0.227  B
  160    0.227  B

Voronoi Net Atomic Populations:
Atom #    Qatom  Species
    1    0.119  B
    2    0.120  B
    3    0.120  B
    4    0.120  B
    5    0.996  N
...
  155    0.993  N
  156    0.993  N
  157    0.119  B
  158    0.119  B
  159    0.119  B
  160    0.119  B

End of run:  10-NOV-2021  11:48:50
Job completed


[]'s,

Camps


On Thu, Jun 16, 2022 at 5:02 PM Alberto Garcia 
<alber...@icmab.es<mailto:alber...@icmab.es>> wrote:

Hi,

I cannot reproduce your results. Which version of Siesta are you using? Can you 
show your output?

The expected behavior is something like this (obtained with the 4.1 branch 
version):

[...]
siesta: Electric dipole (a.u.)  =   -0.000000    0.558297   -0.000000
siesta: Electric dipole (Debye) =   -0.000000    1.419050   -0.000000

Hirshfeld Net Atomic Populations:
Atom #    Qatom  Species
    1   -0.224  O
    2    0.113  H
    3    0.113  H

Voronoi Net Atomic Populations:
Atom #    Qatom  Species
    1   -0.164  O
    2    0.082  H
    3    0.082  H
Bader Analysis core-charge setup. Radii (standard, H):  1.000 0.600

dhscf: Vacuum level (max, mean) =    0.636991   -0.068255 eV

cite: Please see "h2o.bib" for an exhaustive BiBTeX file.
[...]

in which one gets two blocks, one for Voronoi and another one for Hirshfeld 
populations.

 Alberto


----- El 14 de Junio de 2022, a las 22:18, I. Camps 
ica...@gmail.com<mailto:ica...@gmail.com> escribió:

| Hello,
|
| I set my input to calculate and export the charges using Voronoi, Bader and
| Hirshfeld approaches.
|
| My output has at the end two sets, one after the energy decomposition/final
| energy/etc. section, and then after some info about Bader/Vacuum level/LDOS
| info.
|
| Both sets return different charges.
|
| My questions are:
| - Why two sets of charges?
| - Which one is the "good" one?
|
| []'s,
|
| Camps
|
|
| --
| SIESTA is supported by the Spanish Research Agency (AEI) and by the European
| H2020 MaX Centre of Excellence (http://www.max-centre.eu/)

--
SIESTA is supported by the Spanish Research Agency (AEI) and by the European 
H2020 MaX Centre of Excellence (http://www.max-centre.eu/)


--
SIESTA is supported by the Spanish Research Agency (AEI) and by the European 
H2020 MaX Centre of Excellence (http://www.max-centre.eu/)

--
SIESTA is supported by the Spanish Research Agency (AEI) and by the European 
H2020 MaX Centre of Excellence (http://www.max-centre.eu/)

--
Emilio Artacho

Theory Group, Nanogune, 20018 San Sebastian, Spain, and
Theory of Condensed Matter, Department of Physics,
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK



-- 
SIESTA is supported by the Spanish Research Agency (AEI) and by the European 
H2020 MaX Centre of Excellence (http://www.max-centre.eu/)

Responder a