Hi, When I input
y = symbols("y", positive=True) z = symbols("z", real=True) K = symbols("K", integer=True, positive=True) eta = Symbol("eta", positive=True) g = y * ((1-(z*y)**2)**(-2+K/2 + eta) * gamma(S(1)/2 * (-1+K)+eta))/(sqrt(pi) * gamma(-1+K/2+eta)) * (2 * (y**2)**eta (1-y**2)**(S(1)/2 * (-4+K)))/beta(S(1)/2+eta,-1+K/2) f = simplify(integrate(g, (y, 0, 1), meijerg=True)) f I obtain ⎛ K │ ⎞ ⎜ ─ - 2 │ ⎟ ⎜ 2 K │ ⎟ 2 ⎜η (0) + 1, - ─ - η + 2 │ ⎟ 2 ⎛K 1⎞ ┌─ ⎜ 2 │ 2 2⋅ⅈ⋅π⎟ η (0)⋅Γ⎜─ + η - ─⎟ ⋅ ├─ ⎜ │ z ⋅ℯ ⎟ ⎝2 2⎠ 2╵ 1 ⎜ K │ ⎟ ⎜ ─ - 2 │ ⎟ ⎜ 2 │ ⎟ ⎝ η (0) + 2 │ ⎠ ───────────────────────────────────────────────────────────────── ⎛ K ⎞ ⎜ ─ ⎟ ___ ⎜ 2 2 ⎟ ⎛K ⎞ ⎛K ⎞ ╲╱ π ⋅⎝η (0) + η (0)⎠⋅Γ⎜─ - 1⎟⋅Γ(η + 1/2)⋅Γ⎜─ + η - 1⎟ ⎝2 ⎠ ⎝2 ⎠ But I do not know how to interpret the eta(0) notation. In this problem, eta is a fixed positive scalar, so I am not sure how an operator becomes involved. FWIW, Mathematica also produces an answer in terms of the Gaussian hypergeometric function that is perhaps equivalent but without any unusual notation involving eta. However, I had to supply Mathematica with the assumption that z^2 < 1, and I am trying to understand the function, f, for any real z. (although I'm pretty sure it will be a piecewise function). The function should always output a real number, but Mathematica gives me a complex result if I assume z^2 > 1. Thanks, Ben -- You received this message because you are subscribed to the Google Groups "sympy" group. To unsubscribe from this group and stop receiving emails from it, send an email to sympy+unsubscr...@googlegroups.com. To post to this group, send email to sympy@googlegroups.com. Visit this group at http://groups.google.com/group/sympy?hl=en-US. For more options, visit https://groups.google.com/groups/opt_out.