Hi,

When I input

y = symbols("y", positive=True)
z = symbols("z", real=True)
K = symbols("K", integer=True, positive=True)
eta = Symbol("eta", positive=True)
g = y * ((1-(z*y)**2)**(-2+K/2 + eta) * gamma(S(1)/2 * 
(-1+K)+eta))/(sqrt(pi) * gamma(-1+K/2+eta)) * (2 * (y**2)**eta 
(1-y**2)**(S(1)/2 * (-4+K)))/beta(S(1)/2+eta,-1+K/2)
f = simplify(integrate(g, (y, 0, 1), meijerg=True))
f

I obtain

                         ⎛ K                         │          ⎞
                         ⎜ ─ - 2                     │          ⎟
                         ⎜ 2               K         │          ⎟
                  2      ⎜η     (0) + 1, - ─ - η + 2 │          ⎟
 2     ⎛K       1⎞   ┌─  ⎜                 2         │  2  2⋅ⅈ⋅π⎟
η (0)⋅Γ⎜─ + η - ─⎟ ⋅ ├─  ⎜                           │ z ⋅ℯ     ⎟
       ⎝2       2⎠  2╵ 1 ⎜       K                   │          ⎟
                         ⎜       ─ - 2               │          ⎟
                         ⎜       2                   │          ⎟
                         ⎝      η     (0) + 2        │          ⎠
─────────────────────────────────────────────────────────────────
            ⎛         K   ⎞                                      
            ⎜         ─   ⎟                                      
        ___ ⎜ 2       2   ⎟  ⎛K    ⎞             ⎛K        ⎞     
      ╲╱ π ⋅⎝η (0) + η (0)⎠⋅Γ⎜─ - 1⎟⋅Γ(η + 1/2)⋅Γ⎜─ + η - 1⎟     
                             ⎝2    ⎠             ⎝2        ⎠     



But I do not know how to interpret the eta(0) notation. In this problem, 
eta is a fixed positive scalar, so I am not sure how an operator becomes 
involved. 

FWIW, Mathematica also produces an answer in terms of the Gaussian 
hypergeometric function that is perhaps equivalent but without any unusual 
notation involving eta. However, I had to supply Mathematica with the 
assumption that z^2 < 1, and I am trying to understand the function, f, for 
any real z. (although I'm pretty sure it will be a piecewise function). The 
function should always output a real number, but Mathematica gives me a 
complex result if I assume z^2 > 1.

Thanks,
Ben


-- 
You received this message because you are subscribed to the Google Groups 
"sympy" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sympy+unsubscr...@googlegroups.com.
To post to this group, send email to sympy@googlegroups.com.
Visit this group at http://groups.google.com/group/sympy?hl=en-US.
For more options, visit https://groups.google.com/groups/opt_out.


Reply via email to