ring r = 0,(x,y,z),dp module MD = [1,x2+y,x*y-y*z,0,0],[0,x*z-y,z-x,0,0],[0,0,0,x2+y,x*y-y*z],[1,0,0,x*z-y,z-x];
module MK = syz(MD); matrix MM = MK; print(MM); module N =[x2+y,x*z-y],[x*y-y*z,z-x]; quotient(N,freemodule(nrows(MK))); from sympy import QQ from sympy.abc import x QQ.old_poly_ring(x).ideal(1,x2+y,x*y-y*z,0,0,0,x*z-y,z-x,0,0,0,0,0,x2+y,x*y-y*z,1,0,0,x*z-y,z-x).syzygy_module() <- this has error -- You received this message because you are subscribed to the Google Groups "sympy" group. To unsubscribe from this group and stop receiving emails from it, send an email to sympy+unsubscr...@googlegroups.com. To post to this group, send email to sympy@googlegroups.com. Visit this group at http://groups.google.com/group/sympy. For more options, visit https://groups.google.com/groups/opt_out.