It turns ut that Chris' sugestion is effective in sympy 1.9 (current), but 
not in sympy 1.8 (still used by Sage 9.5.beta7). I still think that this 
equation preprocessing shouldn't be necessary...

Sorry for the noise.

Le lundi 6 décembre 2021 à 11:10:16 UTC+1, emanuel.c...@gmail.com a écrit :

> It’s a bit more involved than that; see the parallel discussion of the 
> same problem in this post 
> <https://groups.google.com/g/sage-support/c/ZnKV3D-i9t0> on Sagemath 
> support list.
> ​
> Le lundi 6 décembre 2021 à 02:28:31 UTC+1, smi...@gmail.com a écrit :
>
>> It just looks like the OP issue has two extra solutions (when the initial 
>> equations are not factored) which couldn't be eliminated (easily) and the 
>> solver sends them back to be safe.
>>
>> NOTE: `fsol` in the previous was obtained with `solve([factor(i) for i in 
>> Sys], Unk, simplify=False)`. 
>>
>> If checking is turned off then two invalid solutions are included, but 
>> the solution involving `sqrt(303)` is missing:
>> ```python
>> >>> s=solve([factor(i) for i in Sys], Unk, check=0,dict=1); s
>> [{a2: 0, a1: 0}, {a2: 0, a1: 0}, {a1: 0, a2: 0}, {a1: 0, b2: 0}, {a2: 0, 
>> b2: 0}, {a2: a1**2, b1: b2*(a1**3 + 2*a1**2 - 1)/(3*a1**3)}]
>> >>> [[e.subs(si).simplify() for e in Sys] for si in s]
>> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, a2**3, -2*a2**2*b1], 
>> [0, 0, 0, 0], [0, 0, 0, a1*b2*(a1**3 - 4*a1**2 + 2)/3]]
>> ```
>>
>> /c
>> On Sunday, December 5, 2021 at 8:50:27 AM UTC-6 Chris Smith wrote:
>>
>>> If you factor the equations before passing them to solve then the 
>>> solution is
>>> ```
>>> >>> fsol
>>> [{a2: 0, a1: 0}, {a2: 0, a1: 0}, {a2: 0, b2: 0}, {a2: 0, b1: b2/2, a1:
>>> 0}, {a2: (64 + (-8 + (1 - sqrt(3)*I)*(37 + 3*sqrt(303)*I)**(1/3))*(1 -
>>> sqrt(3)*I)*(37 + 3*sqrt(303)*I)**(1/3))**2/(36*(1 - sqrt(3)*I)**2*(37
>>> + 3*sqrt(303)*I)**(2/3)), b1: b2/2, a1: (-64 + (1 - sqrt(3)*I)*(8 +
>>> (-1 + sqrt(3)*I)*(37 + 3*sqrt(303)*I)**(1/3))*(37 +
>>> 3*sqrt(303)*I)**(1/3))/(6*(1 - sqrt(3)*I)*(37 +
>>> 3*sqrt(303)*I)**(1/3))}, {a2: (64 + (-8 + (1 + sqrt(3)*I)*(37 +
>>> 3*sqrt(303)*I)**(1/3))*(1 + sqrt(3)*I)*(37 +
>>> 3*sqrt(303)*I)**(1/3))**2/(36*(1 + sqrt(3)*I)**2*(37 +
>>> 3*sqrt(303)*I)**(2/3)), b1: b2/2, a1: (-64 + (1 + sqrt(3)*I)*(8 - (1 +
>>> sqrt(3)*I)*(37 + 3*sqrt(303)*I)**(1/3))*(37 +
>>> 3*sqrt(303)*I)**(1/3))/(6*(1 + sqrt(3)*I)*(37 +
>>> 3*sqrt(303)*I)**(1/3))}, {a2: (16 + (4 + (37 +
>>> 3*sqrt(303)*I)**(1/3))*(37 + 3*sqrt(303)*I)**(1/3))**2/(9*(37 +
>>> 3*sqrt(303)*I)**(2/3)), b1: b2/2, a1: 4/3 + 16/(3*(37 +
>>> 3*sqrt(303)*I)**(1/3)) + (37 + 3*sqrt(303)*I)**(1/3)/3}, {a2: a1**2,
>>> b1: 0, b2: 0}]
>>> ```
>>> and all of them are true solutions:
>>> ```
>>> >>> [[e.subs(s).simplify() for e in Sys] for s in fsol]
>>> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], 
>>> [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
>>> ```
>>>
>>> On Sunday, December 5, 2021 at 8:35:28 AM UTC-6 Chris Smith wrote:
>>>
>>>> `nonlinsolve(Sys, Unk)` gives
>>>> ```
>>>> {(0, 0, b1, b2), (0, 0, b2/2, b2), (a1, 0, b1, 0), (-sqrt(a2), a2, 0, 
>>>> 0), (sqrt(a2), a2, 0, 0)}
>>>> ```
>>>> On Saturday, December 4, 2021 at 4:36:04 PM UTC-6 
>>>> emanuel.c...@gmail.com wrote:
>>>>
>>>>> A bug in Sympy’s solve 
>>>>>
>>>>> Inspired by this ask.sagemath.orgquestion 
>>>>> <https://ask.sagemath.org/question/59063/weird-c-values-from-solving-system-of-equations/>
>>>>> .
>>>>>
>>>>> This question was about the names of the symbolic variables created by 
>>>>> Maxima’s solve to denote arbitrary constants. Exploring the example 
>>>>> used in this questions revealed a non-trivial problem with sympy’s 
>>>>> solve.
>>>>> Problem 
>>>>>
>>>>> Solve the system :
>>>>> $$
>>>>> \begin{align*}
>>>>>
>>>>>    - a*{1}^{3} a*{2} + a*{1} a*{2}^{2} &= 0 \ 
>>>>>    - 3 a*{1}^{2} a*{2} b*{1} + 2 a*{1} a*{2} b*{2} - a*{1} b*{2} + 
>>>>> a*{2}^{2} 
>>>>>    b*{2} &= 0 \ 
>>>>>    - a*{1}^{2} a*{2}^{2} + a_{2}^{3} &= 0 \ 
>>>>>    - 2 a*{1}^{2} a*{2} b*{2} - 2 a*{2}^{2} b*{1} + 3 a*{2}^{2} b_{2} 
>>>>>    &= 0
>>>>>    \end{align*}
>>>>>    $$ 
>>>>>
>>>>> # Set up sympy (brutal version)import sympyfrom sympy import *
>>>>> init_session()
>>>>> init_printing(pretty_print=False)# System to solve
>>>>> a1, a2, b1, b2 = symbols('a1 a2 b1 b2')
>>>>> Unk = [a1, a2, b1, b2]
>>>>> eq1 = a1 * a2**2 - a2 * a1**3
>>>>> eq2 = 2*a1*a2*b2 + b2*a2**2 - 3*a2*a1**2*b1 - a1*b2
>>>>> eq3 = a2**3 - a2**2*a1**2
>>>>> eq4 = 3*a2**2*b2 - 2*a2*a1**2*b2 - 2*a2**2*b1
>>>>> Sys = [eq1, eq2, eq3, eq4]
>>>>>
>>>>> IPython console for SymPy 1.9 (Python 3.9.9-64-bit) (ground types: gmpy)
>>>>>
>>>>> These commands were executed:
>>>>> >>> from __future__ import division
>>>>> >>> from sympy import *
>>>>> >>> x, y, z, t = symbols('x y z t')
>>>>> >>> k, m, n = symbols('k m n', integer=True)
>>>>> >>> f, g, h = symbols('f g h', cls=Function)
>>>>> >>> init_printing()
>>>>>
>>>>> Documentation can be found at https://docs.sympy.org/1.9/
>>>>>
>>>>> Attempt to use the “automatic” Sympy solver: 
>>>>>
>>>>> Sol = solve(Sys, Unk)
>>>>> DSol = [dict(zip(Unk, u)) for u in Sol]
>>>>> DSol
>>>>>
>>>>> [{a1: 0, a2: 0, b1: b1, b2: b2}, {a1: 0, a2: 0, b1: b1, b2: b2}, {a1: 0, 
>>>>> a2: 0, b1: b1, b2: b2}, {a1: 0, a2: 0, b1: b2/2, b2: b2}, {a1: a1, a2: 0, 
>>>>> b1: b1, b2: 0}, {a1: -sqrt(a2), a2: a2, b1: 0, b2: 0}, {a1: 
>>>>> -2**(5/6)*sqrt(48*2**(1/3) + 624/(1499 + 3*sqrt(303)*I)**(1/3) + 
>>>>> 3*2**(2/3)*(1499 + 3*sqrt(303)*I)**(1/3))/6, a2: 16/3 + 
>>>>> 104*2**(2/3)/(3*(1499 + 3*sqrt(303)*I)**(1/3)) + 2**(1/3)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/3, b1: b2/2, b2: b2}, {a1: -sqrt(6)*sqrt(32 - 
>>>>> 2**(1/3)*(1 + sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3) - 416*2**(2/3)/((1 
>>>>> + sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)))/6, a2: 2**(2/3)*(-208/3 + (1 
>>>>> + sqrt(3)*I)*(32 + (-1 - sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 
>>>>> + 6*sqrt(303)*I)**(1/3)/12)/((1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)), b1: b2/2, b2: b2}, {a1: -sqrt(6)*sqrt(32 - 
>>>>> 416*2**(2/3)/((1 - sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)) - 
>>>>> 2**(1/3)*(1 - sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3))/6, a2: 
>>>>> 2**(2/3)*(-208/3 + (1 - sqrt(3)*I)*(32 + (-1 + sqrt(3)*I)*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3))*(2998 + 6*sqrt(303)*I)**(1/3)/12)/((1 - 
>>>>> sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)), b1: b2/2, b2: b2}]
>>>>>
>>>>> Something went sideways: the six first solutions are okay,but the last 
>>>>> three use expressions, some of them being polynomials in b2.
>>>>>
>>>>> Attempt to check them formally :
>>>>>
>>>>> Chk=[[u.subs(s) for u in Sys] for s in DSol]
>>>>> Chk
>>>>>
>>>>> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], 
>>>>> [0, 0, 0, 0], [-2**(5/6)*(16/3 + 104*2**(2/3)/(3*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)) + 2**(1/3)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/3)**2*sqrt(48*2**(1/3) + 624/(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3) + 3*2**(2/3)*(1499 + 3*sqrt(303)*I)**(1/3))/6 + 
>>>>> sqrt(2)*(16/3 + 104*2**(2/3)/(3*(1499 + 3*sqrt(303)*I)**(1/3)) + 
>>>>> 2**(1/3)*(1499 + 3*sqrt(303)*I)**(1/3)/3)*(48*2**(1/3) + 624/(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3) + 3*2**(2/3)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3))**(3/2)/54, -2**(2/3)*b2*(16/3 + 
>>>>> 104*2**(2/3)/(3*(1499 + 3*sqrt(303)*I)**(1/3)) + 2**(1/3)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/3)*(48*2**(1/3) + 624/(1499 + 3*sqrt(303)*I)**(1/3) 
>>>>> + 3*2**(2/3)*(1499 + 3*sqrt(303)*I)**(1/3))/12 - 2**(5/6)*b2*(16/3 + 
>>>>> 104*2**(2/3)/(3*(1499 + 3*sqrt(303)*I)**(1/3)) + 2**(1/3)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/3)*sqrt(48*2**(1/3) + 624/(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3) + 3*2**(2/3)*(1499 + 3*sqrt(303)*I)**(1/3))/3 + 
>>>>> b2*(16/3 + 104*2**(2/3)/(3*(1499 + 3*sqrt(303)*I)**(1/3)) + 
>>>>> 2**(1/3)*(1499 + 3*sqrt(303)*I)**(1/3)/3)**2 + 
>>>>> 2**(5/6)*b2*sqrt(48*2**(1/3) + 624/(1499 + 3*sqrt(303)*I)**(1/3) + 
>>>>> 3*2**(2/3)*(1499 + 3*sqrt(303)*I)**(1/3))/6, -2**(2/3)*(16/3 + 
>>>>> 104*2**(2/3)/(3*(1499 + 3*sqrt(303)*I)**(1/3)) + 2**(1/3)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/3)**2*(48*2**(1/3) + 624/(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3) + 3*2**(2/3)*(1499 + 3*sqrt(303)*I)**(1/3))/18 + 
>>>>> (16/3 + 104*2**(2/3)/(3*(1499 + 3*sqrt(303)*I)**(1/3)) + 2**(1/3)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/3)**3, -2**(2/3)*b2*(16/3 + 104*2**(2/3)/(3*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)) + 2**(1/3)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/3)*(48*2**(1/3) + 624/(1499 + 3*sqrt(303)*I)**(1/3) 
>>>>> + 3*2**(2/3)*(1499 + 3*sqrt(303)*I)**(1/3))/9 + 2*b2*(16/3 + 
>>>>> 104*2**(2/3)/(3*(1499 + 3*sqrt(303)*I)**(1/3)) + 2**(1/3)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/3)**2], [2**(1/6)*sqrt(3)*(-208/3 + (1 + 
>>>>> sqrt(3)*I)*(32 + (-1 - sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)*(32 - 2**(1/3)*(1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3) - 416*2**(2/3)/((1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)))**(3/2)/(18*(1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)) - 2**(5/6)*sqrt(3)*(-208/3 + (1 + sqrt(3)*I)*(32 + 
>>>>> (-1 - sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)**2*sqrt(32 - 2**(1/3)*(1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3) - 416*2**(2/3)/((1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)))/(3*(1 + sqrt(3)*I)**2*(1499 + 
>>>>> 3*sqrt(303)*I)**(2/3)), -2*2**(1/6)*sqrt(3)*b2*(-208/3 + (1 + 
>>>>> sqrt(3)*I)*(32 + (-1 - sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)*sqrt(32 - 2**(1/3)*(1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3) - 416*2**(2/3)/((1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)))/(3*(1 + sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)) 
>>>>> - 3*2**(2/3)*b2*(-208/3 + (1 + sqrt(3)*I)*(32 + (-1 - sqrt(3)*I)*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3))*(2998 + 6*sqrt(303)*I)**(1/3)/12)*(16/3 - 
>>>>> 2**(1/3)*(1 + sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)/6 - 
>>>>> 208*2**(2/3)/(3*(1 + sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)))/(2*(1 + 
>>>>> sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)) + sqrt(6)*b2*sqrt(32 - 
>>>>> 2**(1/3)*(1 + sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3) - 416*2**(2/3)/((1 
>>>>> + sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)))/6 + 2*2**(1/3)*b2*(-208/3 + 
>>>>> (1 + sqrt(3)*I)*(32 + (-1 - sqrt(3)*I)*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3))*(2998 + 6*sqrt(303)*I)**(1/3)/12)**2/((1 + 
>>>>> sqrt(3)*I)**2*(1499 + 3*sqrt(303)*I)**(2/3)), -2*2**(1/3)*(-208/3 + (1 + 
>>>>> sqrt(3)*I)*(32 + (-1 - sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)**2*(16/3 - 2**(1/3)*(1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/6 - 208*2**(2/3)/(3*(1 + sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)))/((1 + sqrt(3)*I)**2*(1499 + 
>>>>> 3*sqrt(303)*I)**(2/3)) + 4*(-208/3 + (1 + sqrt(3)*I)*(32 + (-1 - 
>>>>> sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)**3/((1 + sqrt(3)*I)**3*(1499 + 3*sqrt(303)*I)), 
>>>>> -2*2**(2/3)*b2*(-208/3 + (1 + sqrt(3)*I)*(32 + (-1 - sqrt(3)*I)*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3))*(2998 + 6*sqrt(303)*I)**(1/3)/12)*(16/3 - 
>>>>> 2**(1/3)*(1 + sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)/6 - 
>>>>> 208*2**(2/3)/(3*(1 + sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)))/((1 + 
>>>>> sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)) + 4*2**(1/3)*b2*(-208/3 + (1 + 
>>>>> sqrt(3)*I)*(32 + (-1 - sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)**2/((1 + sqrt(3)*I)**2*(1499 + 
>>>>> 3*sqrt(303)*I)**(2/3))], [-2**(5/6)*sqrt(3)*(-208/3 + (1 - sqrt(3)*I)*(32 
>>>>> + (-1 + sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)**2*sqrt(32 - 416*2**(2/3)/((1 - 
>>>>> sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)) - 2**(1/3)*(1 - 
>>>>> sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3))/(3*(1 - sqrt(3)*I)**2*(1499 + 
>>>>> 3*sqrt(303)*I)**(2/3)) + 2**(1/6)*sqrt(3)*(-208/3 + (1 - sqrt(3)*I)*(32 + 
>>>>> (-1 + sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)*(32 - 416*2**(2/3)/((1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)) - 2**(1/3)*(1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3))**(3/2)/(18*(1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)), sqrt(6)*b2*sqrt(32 - 416*2**(2/3)/((1 - 
>>>>> sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)) - 2**(1/3)*(1 - 
>>>>> sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3))/6 + 2*2**(1/3)*b2*(-208/3 + (1 
>>>>> - sqrt(3)*I)*(32 + (-1 + sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 
>>>>> + 6*sqrt(303)*I)**(1/3)/12)**2/((1 - sqrt(3)*I)**2*(1499 + 
>>>>> 3*sqrt(303)*I)**(2/3)) - 3*2**(2/3)*b2*(-208/3 + (1 - sqrt(3)*I)*(32 + 
>>>>> (-1 + sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)*(16/3 - 208*2**(2/3)/(3*(1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)) - 2**(1/3)*(1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/6)/(2*(1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)) - 2*2**(1/6)*sqrt(3)*b2*(-208/3 + (1 - 
>>>>> sqrt(3)*I)*(32 + (-1 + sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)*sqrt(32 - 416*2**(2/3)/((1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)) - 2**(1/3)*(1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3))/(3*(1 - sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)), 
>>>>> 4*(-208/3 + (1 - sqrt(3)*I)*(32 + (-1 + sqrt(3)*I)*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3))*(2998 + 6*sqrt(303)*I)**(1/3)/12)**3/((1 - 
>>>>> sqrt(3)*I)**3*(1499 + 3*sqrt(303)*I)) - 2*2**(1/3)*(-208/3 + (1 - 
>>>>> sqrt(3)*I)*(32 + (-1 + sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)**2*(16/3 - 208*2**(2/3)/(3*(1 - 
>>>>> sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)) - 2**(1/3)*(1 - 
>>>>> sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)/6)/((1 - sqrt(3)*I)**2*(1499 + 
>>>>> 3*sqrt(303)*I)**(2/3)), -2*2**(2/3)*b2*(-208/3 + (1 - sqrt(3)*I)*(32 + 
>>>>> (-1 + sqrt(3)*I)*(2998 + 6*sqrt(303)*I)**(1/3))*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3)/12)*(16/3 - 208*2**(2/3)/(3*(1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)) - 2**(1/3)*(1 - sqrt(3)*I)*(1499 + 
>>>>> 3*sqrt(303)*I)**(1/3)/6)/((1 - sqrt(3)*I)*(1499 + 3*sqrt(303)*I)**(1/3)) 
>>>>> + 4*2**(1/3)*b2*(-208/3 + (1 - sqrt(3)*I)*(32 + (-1 + sqrt(3)*I)*(2998 + 
>>>>> 6*sqrt(303)*I)**(1/3))*(2998 + 6*sqrt(303)*I)**(1/3)/12)**2/((1 - 
>>>>> sqrt(3)*I)**2*(1499 + 3*sqrt(303)*I)**(2/3))]]
>>>>>
>>>>> Some of these expressions are polynomial in b2 whose coefficients of 
>>>>> not-null dregree are nort *obviously* null.
>>>>> A bit of hit-and-miss trials leads to this attempt at *numerical* 
>>>>> check :
>>>>>
>>>>> def chz(x):
>>>>>     r = x.factor().is_zero
>>>>>     if r is None: return x.coeff(b2).n()
>>>>>     return r
>>>>> [[chz(u) for u in v] for v in Chk]
>>>>>
>>>>> [[True, True, True, True],
>>>>>  [True, True, True, True],
>>>>>  [True, True, True, True],
>>>>>  [True, True, True, True],
>>>>>  [True, True, True, True],
>>>>>  [True, True, True, True],
>>>>>  [True, -223.427427555427 + 0.e-25*I, True, True],
>>>>>  [True, -0.388012232966408 - 5.25038392589403e-29*I, True, True],
>>>>>  [True, -0.e-137 + 1.12445821450677e-139*I, True, True]]
>>>>>
>>>>> Solution #8 may be exactr, but #6 and #7 cannot.
>>>>> Manual solution. 
>>>>>
>>>>> eq1 and eq3 give us solutions for a1 and a2 :
>>>>>
>>>>> S13=solve([eq3, eq1], [a2, a1], dict=True) ; S13
>>>>>
>>>>> [{a1: -sqrt(a2)}, {a1: sqrt(a2)}, {a2: 0}]
>>>>>
>>>>> which we prefer to rewrite as :
>>>>>
>>>>> S13 = [{a2:a1**2}, {a2:0}]; S13
>>>>>
>>>>> [{a2: a1**2}, {a2: 0}]
>>>>>
>>>>> Substituting these values in eq4 gives us : 
>>>>>
>>>>> E4 = [eq4.subs(s) for s in S13] ; E4
>>>>>
>>>>> [-2*a1**4*b1 + a1**4*b2, 0]
>>>>>
>>>>> The second solution tells us that S13[1] is also,a solution to [eq1, 
>>>>> eq3, eq4].
>>>>>
>>>>> S134=S13[1:] ; S134
>>>>>
>>>>> [{a2: 0}]
>>>>>
>>>>> Substituting S13[0] ineq4and solving for the variables of the 
>>>>> resulting polynomial augments the setS134of solutions of[eq1, eq3`, 
>>>>> eq4]’ :
>>>>>
>>>>> V4=E4[0].free_symbols
>>>>> S4=[solve(E4[0], v, dict=True) for v in V4] ; S4for S in S4:
>>>>>     for s in S:
>>>>>         S0={u:S13[0][u].subs(s) for u in S13[0].keys()}
>>>>>         S134 += [S0.copy()|s]
>>>>> S134
>>>>>
>>>>> [{a2: 0}, {a2: a1**2, b1: b2/2}, {a1: 0, a2: 0}, {a2: a1**2, b2: 2*b1}]
>>>>>
>>>>> Again, we prefer to rewrite it in a simpler (and shorter) fashion :
>>>>>
>>>>> S134=[{a2:0}, {a2:a1**2, b2:2*b1}] ; S134
>>>>>
>>>>> [{a2: 0}, {a2: a1**2, b2: 2*b1}]
>>>>>
>>>>> Substituting in eq3 gives :
>>>>>
>>>>> [eq2.subs(s) for s in S134]
>>>>>
>>>>> [-a1*b2, -a1**4*b1 + 4*a1**3*b1 - 2*a1*b1]
>>>>>
>>>>> Solving these equations for their free symbols a,d merging with the 
>>>>> previous partial solutions gives us the solutions of the full system :
>>>>>
>>>>> S1234=[]for S in S134:
>>>>>     # print("S=",S)
>>>>>     E=eq2.subs(S)
>>>>>     # print("E=",E)
>>>>>     S1=[solve(E, v, dict=True) for v in E.free_symbols]
>>>>>     # print("S1=",S1)
>>>>>     for s in flatten(S1):
>>>>>         # print("s=",s)
>>>>>         S0={u:S[u].subs(s) if "subs" in dir(S[u]) else S[u] for u in 
>>>>> S.keys()}
>>>>>         S1234+=[S0.copy()|s]
>>>>> S1234
>>>>>
>>>>> [{a1: 0, a2: 0}, {a2: 0, b2: 0}, {a2: a1**2, b1: 0, b2: 0}, {a1: 0, a2: 
>>>>> 0, b2: 2*b1}, {a1: 4/3 + (-1/2 - sqrt(3)*I/2)*(37/27 + 
>>>>> sqrt(303)*I/9)**(1/3) + 16/(9*(-1/2 - sqrt(3)*I/2)*(37/27 + 
>>>>> sqrt(303)*I/9)**(1/3)), a2: (4/3 + (-1/2 - sqrt(3)*I/2)*(37/27 + 
>>>>> sqrt(303)*I/9)**(1/3) + 16/(9*(-1/2 - sqrt(3)*I/2)*(37/27 + 
>>>>> sqrt(303)*I/9)**(1/3)))**2, b2: 2*b1}, {a1: 4/3 + 16/(9*(-1/2 + 
>>>>> sqrt(3)*I/2)*(37/27 + sqrt(303)*I/9)**(1/3)) + (-1/2 + 
>>>>> sqrt(3)*I/2)*(37/27 + sqrt(303)*I/9)**(1/3), a2: (4/3 + 16/(9*(-1/2 + 
>>>>> sqrt(3)*I/2)*(37/27 + sqrt(303)*I/9)**(1/3)) + (-1/2 + 
>>>>> sqrt(3)*I/2)*(37/27 + sqrt(303)*I/9)**(1/3))**2, b2: 2*b1}, {a1: 4/3 + 
>>>>> 16/(9*(37/27 + sqrt(303)*I/9)**(1/3)) + (37/27 + sqrt(303)*I/9)**(1/3), 
>>>>> a2: (4/3 + 16/(9*(37/27 + sqrt(303)*I/9)**(1/3)) + (37/27 + 
>>>>> sqrt(303)*I/9)**(1/3))**2, b2: 2*b1}]
>>>>>
>>>>> Again, some solutions, substituted in eq2, give first-degree 
>>>>> monomials in b1 whose oefficient cannot be shownt to be null byis_zero 
>>>>> :
>>>>>
>>>>> [[e.subs(s).is_zero for e in Sys] for s in S1234]
>>>>>
>>>>> [[True, True, True, True],
>>>>>  [True, True, True, True],
>>>>>  [True, True, True, True],
>>>>>  [True, True, True, True],
>>>>>  [True, None, True, True],
>>>>>  [True, None, True, True],
>>>>>  [True, None, True, True]]
>>>>>
>>>>> But, this time, the numerical check points to a probably null result :
>>>>>
>>>>> [Sys[1].subs(S1234[u]).coeff(b1).n() for u in range(3,6)]
>>>>>
>>>>> [0, 0.e-125 + 0.e-127*I, 0.e-125 - 0.e-127*I]
>>>>>
>>>>> ​
>>>>>
>>>>

-- 
You received this message because you are subscribed to the Google Groups 
"sympy" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sympy+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sympy/576fc337-2203-4a1b-86ba-e7ad06be8543n%40googlegroups.com.

Reply via email to