Am Mon, Jan 23, 2023 at 04:34:27PM -0600 schrieb Scott Cheloha:
> Whoops, missed one. This is the fifth and (I think) last armv7 clock
> interrupt driver that needs to switch to clockintr. gptimer(4) is
> nearly identical to dmtimer(4).
>
> Notable changes:
>
> - Switch stathz from 128 to hz.
> - Switch profhz from 1024 to (stathz * 10).
>
> Everything else in the patch is just normal clockintr switching stuff
> or duplicated from the dmtimer(4) patch.
>
> jca@ has compile-tested this.
>
> I would appreciate a test to confirm that the GENERIC boots. I don't
> think we need to do a full release build.
>
> ... if nobody knows where to find a board with gptimer(4), I am
> looking for permission to just commit this as-is. I cannot find any
> entries in the dmesg mails of any machines with gptimer(4). kettenis@
> was uncertain whether we actually support any of the machines that have
> this clock.
>
> Preferences? ok?
Should we just get rid of it? It's only used on OMAP3, which was
already outdated when I started my ARMv7 endeavour a decade ago.
I never had that machine, drahn@ might have one in the attic.
The relevant platforms were the Pandaboard (OMAP4) and the BeagleBone
Black (AM335x). But the OMAP3, did this thing ever work?
> Index: gptimer.c
> ===================================================================
> RCS file: /cvs/src/sys/arch/armv7/omap/gptimer.c,v
> retrieving revision 1.17
> diff -u -p -r1.17 gptimer.c
> --- gptimer.c 22 Jan 2023 18:36:38 -0000 1.17
> +++ gptimer.c 22 Jan 2023 23:52:32 -0000
> @@ -23,9 +23,11 @@
>
> #include <sys/param.h>
> #include <sys/systm.h>
> +#include <sys/clockintr.h>
> #include <sys/kernel.h>
> #include <sys/evcount.h>
> #include <sys/device.h>
> +#include <sys/stdint.h>
> #include <sys/timetc.h>
> #include <machine/bus.h>
> #include <armv7/armv7/armv7var.h>
> @@ -93,14 +95,12 @@
>
> #define TIMER_FREQUENCY 32768 /* 32kHz is used,
> selectable */
>
> -static struct evcount clk_count;
> -static struct evcount stat_count;
> -
> void gptimer_attach(struct device *parent, struct device *self, void *args);
> int gptimer_intr(void *frame);
> void gptimer_wait(int reg);
> void gptimer_cpu_initclocks(void);
> void gptimer_delay(u_int);
> +void gptimer_reset_tisr(void);
> void gptimer_setstatclockrate(int newhz);
>
> bus_space_tag_t gptimer_iot;
> @@ -120,13 +120,16 @@ static struct timecounter gptimer_timeco
> .tc_user = 0,
> };
>
> -volatile u_int32_t nexttickevent;
> -volatile u_int32_t nextstatevent;
> -u_int32_t ticks_per_second;
> -u_int32_t ticks_per_intr;
> -u_int32_t ticks_err_cnt;
> -u_int32_t ticks_err_sum;
> -u_int32_t statvar, statmin;
> +uint64_t gptimer_nsec_cycle_ratio;
> +uint64_t gptimer_nsec_max;
> +
> +void gptimer_rearm(void *, uint64_t);
> +void gptimer_trigger(void *);
> +
> +const struct intrclock gptimer_intrclock = {
> + .ic_rearm = gptimer_rearm,
> + .ic_trigger = gptimer_trigger
> +};
>
> const struct cfattach gptimer_ca = {
> sizeof (struct device), NULL, gptimer_attach
> @@ -177,98 +180,10 @@ gptimer_attach(struct device *parent, st
> gptimer_setstatclockrate, NULL);
> }
>
> -/*
> - * See comment in arm/xscale/i80321_clock.c
> - *
> - * counter is count up, but with autoreload timers it is not possible
> - * to detect how many interrupts passed while interrupts were blocked.
> - * also it is not possible to atomically add to the register
> - * get get it to precisely fire at a non-fixed interval.
> - *
> - * To work around this two timers are used, GPT1 is used as a reference
> - * clock without reload , however we just ignore the interrupt it
> - * would (may?) generate.
> - *
> - * Internally this keeps track of when the next timer should fire
> - * and based on that time and the current value of the reference
> - * clock a number is written into the timer count register to schedule
> - * the next event.
> - */
> -
> int
> gptimer_intr(void *frame)
> {
> - u_int32_t now, r;
> - u_int32_t nextevent, duration;
> -
> - /* clear interrupt */
> - now = bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR);
> -
> - while ((int32_t) (nexttickevent - now) < 0) {
> - nexttickevent += ticks_per_intr;
> - ticks_err_sum += ticks_err_cnt;
> -#if 0
> - if (ticks_err_sum > hz) {
> - u_int32_t match_error;
> - match_error = ticks_err_sum / hz
> - ticks_err_sum -= (match_error * hz);
> - }
> -#else
> - /* looping a few times is faster than divide */
> - while (ticks_err_sum > hz) {
> - nexttickevent += 1;
> - ticks_err_sum -= hz;
> - }
> -#endif
> - clk_count.ec_count++;
> - hardclock(frame);
> - }
> - while ((int32_t) (nextstatevent - now) < 0) {
> - do {
> - r = random() & (statvar -1);
> - } while (r == 0); /* random == 0 not allowed */
> - nextstatevent += statmin + r;
> - /* XXX - correct nextstatevent? */
> - stat_count.ec_count++;
> - statclock(frame);
> - }
> - if ((nexttickevent - now) < (nextstatevent - now))
> - nextevent = nexttickevent;
> - else
> - nextevent = nextstatevent;
> -
> -/* XXX */
> - duration = nextevent -
> - bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR);
> -#if 0
> - printf("duration 0x%x %x %x\n", nextevent -
> - bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR),
> - bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TCRR),
> - bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR));
> -#endif
> -
> -
> - if (duration <= 0)
> - duration = 1; /* trigger immediately. */
> -
> - if (duration > ticks_per_intr) {
> - /*
> - * If interrupts are blocked too long, like during
> - * the root prompt or ddb, the timer can roll over,
> - * this will allow the system to continue to run
> - * even if time is lost.
> - */
> - duration = ticks_per_intr;
> - nexttickevent = now;
> - nextstatevent = now;
> - }
> -
> - gptimer_wait(GP_TWPS_ALL);
> - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TISR,
> - bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TISR));
> - gptimer_wait(GP_TWPS_ALL);
> - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR, -duration);
> -
> + clockintr_dispatch(frame);
> return 1;
> }
>
> @@ -281,44 +196,31 @@ gptimer_intr(void *frame)
> void
> gptimer_cpu_initclocks(void)
> {
> - stathz = 128;
> - profhz = 1024;
> + stathz = hz;
> + profhz = stathz * 10;
> + clockintr_init(CL_RNDSTAT);
>
> - ticks_per_second = TIMER_FREQUENCY;
> -
> - setstatclockrate(stathz);
> -
> - ticks_per_intr = ticks_per_second / hz;
> - ticks_err_cnt = ticks_per_second % hz;
> - ticks_err_sum = 0;
> + gptimer_nsec_cycle_ratio = TIMER_FREQUENCY * (1ULL << 32) / 1000000000;
> + gptimer_nsec_max = UINT64_MAX / gptimer_nsec_cycle_ratio;
>
> prcm_setclock(1, PRCM_CLK_SPEED_32);
> prcm_setclock(2, PRCM_CLK_SPEED_32);
> +
> /* establish interrupts */
> arm_intr_establish(gptimer_irq, IPL_CLOCK, gptimer_intr,
> NULL, "tick");
>
> /* setup timer 0 (hardware timer 2) */
> /* reset? - XXX */
> -
> - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TLDR, 0);
> -
> - nexttickevent = nextstatevent = bus_space_read_4(gptimer_iot,
> - gptimer_ioh1, GP_TCRR) + ticks_per_intr;
> -
> gptimer_wait(GP_TWPS_ALL);
> bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TIER, GP_TIER_OVF_EN);
> gptimer_wait(GP_TWPS_ALL);
> bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TWER, GP_TWER_OVF_EN);
> gptimer_wait(GP_TWPS_ALL);
> - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR,
> - GP_TCLR_AR | GP_TCLR_ST);
> - gptimer_wait(GP_TWPS_ALL);
> - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TISR,
> - bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TISR));
> - gptimer_wait(GP_TWPS_ALL);
> - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR, -ticks_per_intr);
> - gptimer_wait(GP_TWPS_ALL);
> +
> + /* start the clock interrupt cycle */
> + clockintr_cpu_init(&gptimer_intrclock);
> + clockintr_trigger();
> }
>
> void
> @@ -328,6 +230,61 @@ gptimer_wait(int reg)
> ;
> }
>
> +/*
> + * Clear all interrupt status bits.
> + */
> +void
> +gptimer_reset_tisr(void)
> +{
> + u_int32_t tisr;
> +
> + tisr = bus_space_read_4(gptimer_iot, gptimerioh0, GP_TISR);
> + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TISR, tisr);
> +}
> +
> +void
> +gptimer_rearm(void *unused, uint64_t nsecs)
> +{
> + uint32_t cycles;
> + u_long s;
> +
> + if (nsecs > gptimer_nsec_max)
> + nsecs = gptimer_nsec_max;
> + cycles = (nsecs * gptimer_nsec_cycle_ratio) >> 32;
> +
> + s = intr_disable();
> + gptimer_reset_tisr();
> + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR,
> + UINT32_MAX - cycles);
> + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR, GP_TCLR_ST);
> + gptimer_wait(GP_TWPS_ALL);
> + intr_restore(s);
> +}
> +
> +void
> +gptimer_trigger(void *unused)
> +{
> + u_long s;
> +
> + s = intr_disable();
> +
> + /* stop timer. */
> + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR, 0);
> + gptimer_wait(GP_TWPS_ALL);
> +
> + /* clear interrupt status bits. */
> + gptimer_reset_tisr();
> +
> + /* set shortest possible timeout. */
> + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR, UINT32_MAX);
> +
> + /* start timer, wait for writes to post. */
> + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR, GP_TCLR_ST);
> + gptimer_wait(GP_TWPS_ALL);
> +
> + intr_restore(s);
> +}
> +
> void
> gptimer_delay(u_int usecs)
> {
> @@ -370,26 +327,7 @@ gptimer_delay(u_int usecs)
> void
> gptimer_setstatclockrate(int newhz)
> {
> - int minint, statint;
> - int s;
> -
> - s = splclock();
> -
> - statint = ticks_per_second / newhz;
> - /* calculate largest 2^n which is smaller that just over half statint */
> - statvar = 0x40000000; /* really big power of two */
> - minint = statint / 2 + 100;
> - while (statvar > minint)
> - statvar >>= 1;
> -
> - statmin = statint - (statvar >> 1);
> -
> - splx(s);
> -
> - /*
> - * XXX this allows the next stat timer to occur then it switches
> - * to the new frequency. Rather than switching instantly.
> - */
> + clockintr_setstatclockrate(newhz);
> }
>
>
>