There has been some work done on the effect of finite correlation between oscillator outputs. In some cases allowing a finite correlation coefficient improves the N cornered hat ADEV estimates. In most cases the oscillators being compared share the same ambient environment and thus may exhibit correlated fluctaution due to ambient paramaeter (temperature, pressure humidity etc) variations.

Bruce

Bob Camp wrote:
Hi

How to treat a negative is up to you, it's obviously indicating a "not real"
outcome. Zero is also a "not real" for realizable oscillators. Most simply
note the result as "below floor", drop it, and proceed.

Since the variability of the data is driving the negative results, it's
unlikely that another approach will massively improve things (with the same
data set). The practical answer is to use oscillators with closer noise
performance to reduce the scatter or to improve the data collection method
if it's the limiting factor.

Bob

-----Original Message-----
From: time-nuts-boun...@febo.com [mailto:time-nuts-boun...@febo.com] On
Behalf Of Kyle Wesson
Sent: Thursday, April 22, 2010 5:07 PM
To: time-nuts@febo.com
Subject: [time-nuts] Frequency Stability of An Individual
Oscillator:Negative Values?

Hello,

I am working to determine the Allan variance of an individual
oscillator from a series of three paired measurements as described in
the paper by Gray and Allan "A Method for Estimating the Frequency
Stability of An Individual Oscillator" (NIST, 1974,
tf.nist.gov/general/pdf/57.pdf). In this report they make reference to
the statistical uncertainty of the measurement due to ensemble noise
and potential clock phase correlation which can potentially make the
Allan variance for an individual oscillator have a negative value.
They write:

"If the noise level of the oscillator being measured is low enough,
and the scatter high enough, equation (4) may occasionally give a
negative value for the variance."

My question is: how should I treat negative variance values in this
case? For example, if my data set were to produce an individual
oscillator Allan variance with a value of -5e-12, should I convert
this value to 0 (ie. the closest valid sigma value to the number since
0<= sigma<  inf ), take the absolute value of the result (ie. turn
-5e-12 to +5e-12), or drop the result from my estimate of individual
oscillator frequency stability altogether?

Is there another method that will produce estimates of individual
oscillators from an ensemble approach but assures non-negative output
variances?

Thank you in advance,
Kyle

_______________________________________________
time-nuts mailing list -- time-nuts@febo.com
To unsubscribe, go to
https://www.febo.com/cgi-bin/mailman/listinfo/time-nuts
and follow the instructions there.




_______________________________________________
time-nuts mailing list -- time-nuts@febo.com
To unsubscribe, go to https://www.febo.com/cgi-bin/mailman/listinfo/time-nuts
and follow the instructions there.




_______________________________________________
time-nuts mailing list -- time-nuts@febo.com
To unsubscribe, go to https://www.febo.com/cgi-bin/mailman/listinfo/time-nuts
and follow the instructions there.

Reply via email to