Ed

That is a great LH plot, AND Tbolt setup.
Noise is about the same as I'm seeing.

Can also use this setup to see if the Tbolt location is set correctly by doing a longer plot that includes many satellites changes and see what the peak noise spikes are.

One little minor thing you missed that I find very useful is to set the DAC Plot gain (LH command "GDS xxx" to 1/Dac_Gain x K (K an integer constant) In your case use -269 for Dac plot gain. Then use "+" or "-" to put the Dac plot exactly on top of the other two plots and that way it makes it very clear and very sensitive to see any drift in the Osc. Any Osc drift will shift the offset of the Dac plot. Using the Tbolt filter "FD100" (or slower up to 1000) and adding more plot gains, you can see Osc freq drift changes as small as 1e-12.

Thanks
ws

**************
----- Original Message ----- From: "Ed Palmer"

HI Warren,

The attached picture shows how my Tbolt reacts in TPLL mode.  I lucked
out and got about 35 minutes without a satellite switch.  The antenna
consists of a VIC-100 + about 100 feet of RG-59 + 20db amp + HP
splitter.  No choke ring or ground plane.  The antenna has good
visibility E, W, S, and up, but it's on my balcony on the South side of
a building so there's little reception from the North.  I realize that
the big hole to the North is inherent in the GPS system.

Ed

********************
On 10/12/2011 11:46 PM, WarrenS wrote:
John wrote:
>I'm curious where you got the noise data for the TBolt GPS engine
Besides the measured ADEV plot I posted at

http://www.febo.com/pipermail/time-nuts/attachments/20111007/48d1ab68/attachment-0001.gif

Attached is another way I've measured Phase noise of the Tbolt, to optimizing its antenna system. This LH plot shows a total phase noise (GPS, + TBolt + Osc) of 0.087 ns RMS reading to reading variation at one second update, over a time period of 26 minutes using a one second disiplined loop. This is the same as 0.87 e-10 RMS freq noise if using a 1 second time base.


On this test, I set the Tbolt's Time Constant to 1 second and its damping to 10. (The Dac gain must be set right on to work right) This causes the Tbolt's discipline loop to correct any phase error due to noise on the very next 1 sec update by stepping the Oscillator's frequency. This Is an easy way to measure the reading to reading phase difference using just LadyHeather. The data can also be interpreted.as the average RMS frequency variation over 1 second, which is approximately equal to the ADEV value at a tau of one second (1e-10).

example: If the first phase reading where zero and the next one is +1ns then the control loop will change the Osc freq by way of its EFC, by 1e-9 so that the very next phase difference is zero again. This makes it into a 1 sec delayed TPLL (Tight Phase Lock Loop).

I ran this same test on John's Online Tbolt. Its phase noise measured 0.13 ns RMS. Most of the difference was caused by satellites switching during the test. Each switch causes a ns or so noise spike when the number of satellites changed. I also tried several other test including using just one bird with no switching. That was more than twice as noisy depending on which satellite bird I selected.

I'd like to see what the Phase noise is of other Tbolts using this same method, especially when using a good choke ring antenna that has a good sky view.

ws

*****************
****************
ws at Yahoo wrote:

The noise data is my measured values which I do several different ways. Some
of which are:

The GPS engine value was calculated from measuring the UNFILTERED RMS noise of the freq plot data using LadyHeather, backed up by the independent way of looking at the UNFILTERED 1 sec ADEV values obtained when plotting the ADEV
from that data using an external low noise osc.
The other proof that the data is unfiltered was done by black box testing of small near instantaneous freq changes of 1e-10 and measuring and how long it took the Tbolt plot to settle to the new freq value using different filter
setting.
The answer is that it knows the correct freq (within it's nose limits) in
the next 1 sec sample period when the filter is turned off.

As for the ns phase noise that is the RMS Phase noise value from LH using a good LPRO osc with it's Time constant set to many hrs. (Phase correction TC was 100K sec). The RMS noise value is very insensitive to the filter setting
up to 1000 seconds because most of the phase noise is slower than 1000
seconds.

As far as the 4 to 10 ns day to day USNO data , that has nothing to do with sub ns short term noise which I generally limit to more like a few minutes of sampel time, and if there is a satellite change during the test run, then
I start the test over because I'm looking at GPS engine noise and not the
GPS noise causes by changing satellites etc.

As far as the 4 to 10 ns over a two day period, that agrees pretty well with
what I see some times on a bad day.
On a good day I can get more like 2 to 3 ns, with a 500 sec filter, on a bad
day up to 5 or 6 ns.
For some periods lasting up to 5 to 6 hrs, I've seen numbers as low as 1.5
ns RMS.

ws

******************
From: "John Ackermann N8UR"

In that test I was just capturing the ADEV table from the TSC-5120 so don't
have raw phase data.

I'm curious where you got the noise data for the TBolt gps engine -- that's
far better than I've seen quoted before.  The Trimble data sheet that I
found specs the system PPS accuracy at 20 nanoseconds one sigma; they don't separately spec the GPS engine. (The data sheet for the current Thunderbolt
E data sheet says 15 nanoseconds.)

The USNO says that their filtered, linear fit time transfer measurements
over a two day period, over the entire constellation, have an RMS residual of 4 to 10 nanoseconds without SA (http://tycho.usno.navy.mil/gpstt.html).
That may not be apples-to-apples methodology, but it implies that
sub-nanosecond results may be difficult to obtain.

John
----




_______________________________________________
time-nuts mailing list -- time-nuts@febo.com
To unsubscribe, go to https://www.febo.com/cgi-bin/mailman/listinfo/time-nuts
and follow the instructions there.

Reply via email to