At 11:21 PM 1/4/2007, Terry Carroll wrote: >On Wed, 3 Jan 2007, Dick Moores wrote: > > > Be that as it may, farey() is an amazing program. > >Not to beat this subject to death, but the comment at the bottom of >http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52317 about >continued fractions piqued my interest. I'm no mathematician, but I >encountered continued fractions a long time ago and was fascinated by >them. So I read the URL pointed to, >http://mathworld.wolfram.com/ContinuedFraction.html , and came up with the >following: > >##################################################### > >def cf(x, tol=0.0001, Trace=False): > """ > Calculate rational approximation of x to within tolerance of tol; > returns a tuple consisting of numerator and denominator p/q > Trace=True causes iterated results to be shown > """ > a, r, p, q = [], [], [], [] > Done = False > n = 0 > if Trace: print "x:%f tol:%f" % (x, tol) > while not Done: > a.append(None) > r.append(None) > p.append(None) > q.append(None) > if n == 0: r[n] = x > else: r[n] = 1/(r[n-1]-a[n-1]) > a[n] = int(r[n]) > if n == 0: > p[n] = a[0] > q[n] = 1 > elif n ==1: > p[n] = a[n]*p[n-1] + 1 > q[n] = a[n] > else: > p[n] = a[n]*p[n-1] + p[n-2] > q[n] = a[n]*q[n-1] + q[n-2] > if Trace: > print "n:%d a:%d p:%d q:%d approx:%f" % \ > (n, a[n], p[n], q[n], float(p[n])/q[n]) > if abs(float(p[n])/q[n] - x) < tol: > Done = True > num = p[n]; denom = q[n] > n += 1 > return (num, denom) > >##################################################### > >Here's a result for pi: > > >>> print cf(3.14159265357989,0.0000001, Trace=True) >x:3.141593 tol:0.000000 >n:0 a:3 p:3 q:1 approx:3.000000 >n:1 a:7 p:22 q:7 approx:3.142857 >n:2 a:15 p:333 q:106 approx:3.141509 >n:3 a:1 p:355 q:113 approx:3.141593 >n:4 a:292 p:103993 q:33102 approx:3.141593 >(103993, 33102) > >i.e., the first 5 approximations it came up with were 3/1, 22/7, 333/106, >355/113 and a whopping 103993/33102. > >For the 0.36 example you used earlier: > > >>> print cf(0.36, .01, Trace= True) >x:0.360000 tol:0.010000 >n:0 a:0 p:0 q:1 approx:0.000000 >n:1 a:2 p:1 q:2 approx:0.500000 >n:2 a:1 p:1 q:3 approx:0.333333 >n:3 a:3 p:4 q:11 approx:0.363636 >(4, 11) > >>> > >it went right from 1/3 to 4/11 (0.363636), skipping the 3/8 (0.375) option >from the farey series. > >But this continued fraction algorithm is ill-suited to answer the question >"what's the closest fraction with a denominator < N", because it doesn't >try to find that, it jumps further ahead with each iteration. > >Anyway, I thought you might find it interesting based on our discussion.
Terry, Well, I have to admit I don't understand your code at all. But I see it works. I modified one of my functions of frac.py, and came up with =============================================== from __future__ import division import time, psyco psyco.full() def d(number): import decimal decimal.getcontext().prec = 16 return decimal.Decimal(str(number)) def bestFracForMinimumError(decimal, minimumError): denom = 0 smallestError = 10 count = 0 while True: denom += 1 num = int(round(d(decimal) * d(denom))) error = abs((((d(num)) / d(denom)) - d(decimal)) / d(decimal)) * d(100) if d(error) <= d(smallestError): count += 1 smallestError = d(error) q = d(num)/d(denom) print "%d/%d = %s has error of %s per cent" % (num, denom, q, smallestError) if d(smallestError) <= d(minimumError): print "count is", count break ===================================================================== You can see the results of both bestFracForMinimumError(3.14159265357989, 0.00000002) (BTW your pi is a bit off but I used yours, instead of math.pi, which is 3.1415926535897931 . Also, I needed 0.00000002 in order to produce your 103993/33102) and bestFracForMinimumError(.36, .01) at <http://www.rcblue.com/Python/PartOfReplyToTerryOnTutorList.txt> Dick _______________________________________________ Tutor maillist - Tutor@python.org http://mail.python.org/mailman/listinfo/tutor