Dear colleagues,

We would like to remind you that early registration for the Madrid UPM Advanced 
Statistics and Data Mining summer school finishes on June 2nd (included). 

The summer school will be held in Boadilla del Monte, near Madrid, from June 
24th to July 5th. This year's edition comprises 12 week-long courses (15 
lecture hours each), given during two weeks (six courses each week). Attendees 
may register in each course independently. No restrictions, besides those 
imposed by timetables, apply on the number or choice of courses.

Our summer school has been an INOMICS world top ten summer schools in 
mathematics and statistics from 2015 to 2017. See the 2017 ranking at 
http://bit.ly/2oR00GI

Early registration is *OPEN*. Extended information on course programmes, price, 
venue, accommodation and transport is available at the school's website:

http://www.dia.fi.upm.es/ASDM

There is a 25% discount for members of Spanish AEPIA and SEIO societies.  

Please, forward this information to your colleagues, students, and whoever you 
think may find it interesting.

Best regards,

Pedro Larrañaga, Concha Bielza, Bojan Mihaljević and Santiago Gil Begué.
-- School coordinators.

*** List of courses and brief description ***

* Week 1 (June 24th - June 28th, 2019) *

1st session: 9:45-12:45
Course 1: Bayesian Networks (15 h)
      Basics of Bayesian networks. Inference in Bayesian networks. Learning 
Bayesian networks from data. Real applications. Practical demonstration: GeNIe, 
Weka, Bayesia, R.

Course 2: Time Series(15 h)
      Basic concepts in time series. Linear models for time series. Time series 
clustering. Practical demonstration: R.

2nd session: 13:45-16:45
Course 3: Supervised Pattern Recognition (15 h)
      Introduction. Assessing the performance of supervised classification 
algorithms. Preprocessing. Classification techniques. Combining multiple 
classifiers. Comparing supervised classification algorithms. Practical 
demonstration: Weka. 

Course 4: Statistical Inference (15 h)
      Introduction. Some basic statistical test. Multiple testing. Introduction 
to bootstrap methods. Introduction to Robust Statistics. Practical 
demonstration: R.  

3rd session: 17:00 - 20:00
Course 5: Neural Networks and Deep Learning (15 h)
      Introduction. Learning algorithms. Learning and Optimization. Deep 
Networks. Practical session: Jupyter notebooks in Python Anaconda with keras 
and tensorflow.

Course 6: Big Data with Apache Spark (15 h)
      Introduction. Spark framework and APIs. Data processing with Spark. Spark 
streaming. Machine learning with Spark MLlib. 


* Week 2 (July 1st - July 5th, 2019) *

1st session: 9:45-12:45 
Course 7: Bayesian Inference (15 h)
      Introduction: Bayesian basics. Conjugate models. MCMC and other 
simulation methods. Regression and Hierarchical models. Model selection. 
Practical demonstration: R and WinBugs.

Course 8: Unsupervised Pattern Recognition (15 h)
      Introduction to clustering. Data exploration and preparation. 
Prototype-based clustering. Density-based clustering. Graph-based clustering. 
Cluster evaluation. Miscellanea. Conclusions and final advise. Practical 
session: R.

2nd session: 13:45-16:45
Course 9: Text Mining (15 h)
      Information Retrieval 101. Unsupervised Text Processing. Representation 
Learning. Information Extraction. Natural Language Understanding. Practical 
session: Python, with Jupyter notebooks.

Course 10: Feature Subset Selection (15 h)
      Introduction. Filter approaches. Embedded methods. Wrapper methods. 
Additional topics. Practical session: R and Weka.      
      
3rd session: 17:00-20:00
Course 11: Support Vector Machines and Regularized Learning (15 h)
      Introduction. SVM models. SVM learning algorithms. Regularized learning. 
Convex optimization with proximal methods. Practical session: Python Anaconda 
with scikit-learn.
      
Course 12: Hidden Markov Models (15 h)
      Introduction. Discrete Hidden Markov Models. Basic algorithms for Hidden 
Markov Models. Semicontinuous Hidden Markov Models. Continuous Hidden Markov 
Models. Unit selection and clustering. Speaker and Environment Adaptation for 
HMMs. Other applications of HMMs. Practical session: HTK.


_______________________________________________
uai mailing list
uai@ENGR.ORST.EDU
https://secure.engr.oregonstate.edu/mailman/listinfo/uai

Reply via email to