这种情况一般是kafka的某个分区,不存在数据,导致总体的watermark不前进。遇到这种情况一般是需要手动设置idle source[1]。但是社区的watemark push down存在一些问题[2],已经在修复了。
[1] https://ci.apache.org/projects/flink/flink-docs-master/dev/table/config.html#table-exec-source-idle-timeout [2] https://issues.apache.org/jira/browse/FLINK-20947?page=com.atlassian.jira.plugin.system.issuetabpanels%3Aall-tabpanel 花乞丐 <huaxiapa...@163.com> 于2021年1月18日周一 上午11:42写道: > > 代码已经附上,我现在是数据已经写入hdfs,有文件生产,但是目前添加的水印无效,所以一直没有更新metastore信息,导致metastore中一直没有分区信息,必须在hive > shell中执行命令:hive (ods)> msck repair table > > order_info。之后才可以查询到数据,经过debug发现,在分区提交的时候,需要判断水印的值比从分区提取的值+延迟时间大,才会提交分区,但是现在,水印的值一直是Long.MIN_VALUE,导致一直无法提交水印,我在代码中已经设置了水印,是不是我的水印设置姿势不对,还请指教! > package com.zallsteel.flink.app.log; > > import com.alibaba.fastjson.JSON; > import com.alibaba.fastjson.JSONObject; > import com.google.gson.Gson; > import com.google.gson.JsonArray; > import com.google.gson.JsonElement; > import com.google.gson.JsonParser; > import com.zallsteel.flink.entity.ChangelogVO; > import com.zallsteel.flink.entity.OrderInfo; > import com.zallsteel.flink.utils.ConfigUtils; > > import lombok.SneakyThrows; > import org.apache.commons.lang3.time.FastDateFormat; > import org.apache.flink.api.common.eventtime.*; > import org.apache.flink.api.common.functions.MapFunction; > import org.apache.flink.api.common.serialization.SimpleStringSchema; > import org.apache.flink.api.common.typeinfo.TypeInformation; > import org.apache.flink.api.common.typeinfo.Types; > import org.apache.flink.api.java.typeutils.RowTypeInfo; > import org.apache.flink.streaming.api.CheckpointingMode; > import org.apache.flink.streaming.api.TimeCharacteristic; > import org.apache.flink.streaming.api.datastream.DataStreamSource; > import > org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; > import > org.apache.flink.streaming.api.environment.ExecutionCheckpointingOptions; > import > org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; > import > > org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor; > import org.apache.flink.streaming.api.windowing.time.Time; > import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer; > import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase; > import org.apache.flink.table.api.EnvironmentSettings; > import org.apache.flink.table.api.SqlDialect; > import org.apache.flink.table.api.TableResult; > import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; > import org.apache.flink.table.catalog.hive.HiveCatalog; > import org.apache.flink.types.Row; > import org.apache.flink.types.RowKind; > > import java.text.ParseException; > import java.time.Duration; > import java.util.Date; > import java.util.Properties; > > /** > * @author Jackie Zhu > * @time 2021-01-13 16:50:18 > * @desc 测试MySQLCDC to Hive > */ > public class MySQLCDC2HiveApp { > public static void main(String[] args) { > //获取执行环节 > StreamExecutionEnvironment env = > StreamExecutionEnvironment.getExecutionEnvironment(); > // 设置并发 > env.setParallelism(6); > //设置checkpoint > env.enableCheckpointing(60000); > env.getConfig().setAutoWatermarkInterval(200); > // 设置Flink SQL环境 > EnvironmentSettings tableEnvSettings = > > EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); > // 创建table Env > StreamTableEnvironment tableEnv = > StreamTableEnvironment.create(env, > tableEnvSettings); > // 设置checkpoint 模型 > > > tableEnv.getConfig().getConfiguration().set(ExecutionCheckpointingOptions.CHECKPOINTING_MODE, > CheckpointingMode.EXACTLY_ONCE); > // 设置checkpoint间隔 > > > tableEnv.getConfig().getConfiguration().set(ExecutionCheckpointingOptions.CHECKPOINTING_INTERVAL, > Duration.ofMinutes(1)); > // 指定catalog名称 > String catalogName = "devHive"; > // 创建HiveCatalog > HiveCatalog hiveCatalog = new HiveCatalog(catalogName, > "default", > "/home/beggar/tools/apache-hive-3.1.2-bin/conf", > "/home/beggar/tools/hadoop-3.1.1/etc/hadoop", > "3.1.2" > ); > //注册 Hive Catalog > tableEnv.registerCatalog(catalogName,hiveCatalog); > //使用hive Catalog > tableEnv.useCatalog(catalogName); > //创建mysql cdc 数据源 > tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS cdc"); > // 创建mysql cdc 数据表 > tableEnv.executeSql("DROP TABLE IF EXISTS cdc.order_info"); > tableEnv.executeSql("CREATE TABLE cdc.order_info(\n" + > " id BIGINT,\n" + > " user_id BIGINT,\n" + > " create_time TIMESTAMP,\n" + > " operate_time TIMESTAMP,\n" + > " province_id INT,\n" + > " order_status STRING,\n" + > " total_amount DECIMAL(10, 5)\n" + > " ) WITH (\n" + > " 'connector' = 'mysql-cdc',\n" + > " 'hostname' = 'beggar',\n" + > " 'port' = '3306',\n" + > " 'username' = 'root',\n" + > " 'password' = '123456',\n" + > " 'database-name' = 'cdc',\n" + > " 'table-name' = 'order_info'\n" + > ")"); > // 创建kafka source > tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS kafka"); > tableEnv.executeSql("DROP TABLE IF EXISTS kafka.order_info"); > tableEnv.executeSql("CREATE TABLE kafka.order_info (\n" + > "id BIGINT,\n" + > "user_id BIGINT,\n" + > "create_time TIMESTAMP,\n" + > "operate_time TIMESTAMP,\n" + > "province_id INT,\n" + > "order_status STRING,\n" + > "total_amount DECIMAL(10, 5)\n" + > ") WITH (\n" + > "'connector' = 'kafka',\n" + > "'topic' = 'order_info',\n" + > "'scan.startup.mode' = 'earliest-offset',\n" + > "'properties.bootstrap.servers' = 'beggar.dev:9092',\n" + > "'format' = 'changelog-json'\n" + > ")"); > // 向kafka表中插入数据 > tableEnv.executeSql("INSERT INTO kafka.order_info\n" + > "SELECT id, user_id, create_time, > operate_time,province_id,order_status,total_amount\n" + > "FROM cdc.order_info"); > // 自定义带op字段的stream > Properties kafkaConfig = ConfigUtils.getKafkaConfig(); > FlinkKafkaConsumerBase<String> consumer = new FlinkKafkaConsumer<>( > "order_info", > new SimpleStringSchema(), > kafkaConfig > ).setStartFromEarliest(); > DataStreamSource<String> streamSource = env.addSource(consumer); > > > > String[] fieldNames = > > {"id","user_id","create_time","operate_time","province_id","order_status","total_amount","op"}; > > TypeInformation[] types = > > {Types.LONG,Types.LONG,Types.STRING,Types.STRING,Types.INT,Types.INT,Types.DOUBLE,Types.STRING}; > > SingleOutputStreamOperator<Row> ds2 = streamSource.map(new > MapFunction<String, Row>() { > @Override > public Row map(String value) throws Exception { > Gson gson = new Gson(); > ChangelogVO changelogVO = gson.fromJson(value, > ChangelogVO.class); > String op = changelogVO.getOp(); > int arity = fieldNames.length; > Row row = new Row(arity); > row.setField(0, changelogVO.getData().getId()); > row.setField(1, changelogVO.getData().getUserId()); > row.setField(2, changelogVO.getData().getCreateTime()); > row.setField(3, changelogVO.getData().getOperateTime()); > row.setField(4, changelogVO.getData().getProviceId()); > row.setField(5, changelogVO.getData().getOrderStatus()); > row.setField(6, changelogVO.getData().getTotalAmount()); > String operation = getOperation(op); > row.setField(7, operation); > return row; > } > > private String getOperation(String op) { > String operation = "INSERT"; > for (RowKind rk : RowKind.values()) { > if (rk.shortString().equals(op)) { > switch (rk) { > case UPDATE_BEFORE: > operation = "UPDATE-BEFORE"; > break; > case UPDATE_AFTER: > operation = "UPDATE-AFTER"; > break; > case DELETE: > operation = "DELETE"; > break; > case INSERT: > default: > operation = "INSERT"; > break; > } > break; > } > } > return operation; > } > }, new RowTypeInfo(types, fieldNames)); > // 设置水印 > > > ds2.assignTimestampsAndWatermarks(WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(2))); > tableEnv.createTemporaryView("merged_order_info", ds2); > tableEnv.getConfig().setSqlDialect(SqlDialect.HIVE); > tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS ods"); > tableEnv.executeSql("DROP TABLE IF EXISTS ods.order_info"); > tableEnv.executeSql("CREATE TABLE ods.order_info (\n" + > " id BIGINT,\n" + > " user_id BIGINT,\n" + > " create_time STRING,\n" + > " operate_time STRING,\n" + > " province_id INT,\n" + > " order_status INT,\n" + > " total_amount DOUBLE,\n" + > " op STRING \n" + > ") PARTITIONED BY (dt STRING, hr STRING,sec STRING) STORED > AS parquet TBLPROPERTIES (\n" + > " 'partition.time-extractor.timestamp-pattern'='$dt > $hr:$sec:00',\n" + > " 'sink.partition-commit.trigger'='partition-time',\n" + > " 'sink.partition-commit.delay'='1 min',\n" + > " > 'sink.partition-commit.policy.kind'='metastore,success-file'\n" + > ")"); > tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT); > TableResult tableResult = tableEnv.executeSql("INSERT INTO > ods.order_info\n" + > "SELECT \n" + > "id,\n" + > "user_id,\n" + > "create_time,\n" + > "operate_time,\n" + > "province_id,\n" + > "order_status,\n" + > "total_amount,\n" + > "op,\n" + > "DATE_FORMAT(TO_TIMESTAMP(create_time,'yyyy-MM-dd > HH:mm:ss'),'yyyy-MM-dd') as dt,\n" + > "DATE_FORMAT(TO_TIMESTAMP(create_time,'yyyy-MM-dd > HH:mm:ss'),'HH') as hr,\n" + > "DATE_FORMAT(TO_TIMESTAMP(create_time,'yyyy-MM-dd > HH:mm:ss'),'mm') as sec\n" + > "FROM merged_order_info" > ); > try { > tableEnv.execute("mysqlcdc to hive"); > } catch (Exception e) { > e.printStackTrace(); > } > > > } > } > > > > -- > Sent from: http://apache-flink.147419.n8.nabble.com/ >