On Thu, May 2, 2019 at 12:13 AM Pankaj Chand
<pankajchanda...@gmail.com> wrote:
I thought by choosing Beam, I would get the benefits of both (Spark
and Flink), one at a time. Now, I'm understanding that I might not
get the full potential from either of the two.
You get the benefit of being able to choose, without rewriting your
pipeline, whether to run on Spark or Flink. Or the next new runner
that comes around. As well as the Beam model, API, etc.
Example: If I use Beam with Flink, and then a new feature is added
to Flink but I cannot access it via Beam, and that feature is not
important to the Beam community, then what is the suggested
workaround? If I really need that feature, I would not want to
re-write my pipeline in Flink from scratch.
How is this different from "If I used Spark, and a new feature is
added to Flink, I cannot access it from Spark. If that feature is not
important to the Spark community, then what is the suggested
workaround? If I really need that feature, I would not want to
re-write my pipeline in Flink from scratch." Or vice-versa. Or when a
new feature added to Beam itself (that may not be not present in any
of the underlying systems). Beam's feature set is neither the
intersection nor union of the feature sets of those runners it has
available as execution engines. (Even the notion of what is meant by
"feature" is nebulous enough that it's hard to make this discussion
concrete.)
Is it possible that in the near future, most of Beam's capabilities
would favor Google's Dataflow API? That way, Beam could be used to
lure developers and organizations who would typically use
Spark/Flink, with the promise of portability. After they get
dependent on Beam and cannot afford to re-write their pipelines in
Spark/Flink from scratch, they would realize that Beam does not give
access to some of the capabilities of the free engines that they may
require. Then, they would be told that if they want all possible
capabilities and would want to use their code in Beam, they could
pay for the Dataflow engine instead.
Google is very upfront about the fact that they are selling a service
to run Beam pipelines in a completely managed way. But Google has
*also* invested very heavily in making sure that the portability story
is not just talk, for those who need or want to run their jobs on
premise or elsewhere (now or in the future). It is our goal that all
runners be able to run all pipelines, and this is a community effort.
Pankaj
On Tue, Apr 30, 2019 at 6:15 PM Kenneth Knowles <k...@apache.org>
wrote:
It is worth noting that Beam isn't solely a portability layer that
exposes underlying API features, but a feature-rich layer in its
own right, with carefully coherent abstractions. For example, quite
early on the SparkRunner supported streaming aspects of the Beam
model - watermarks, windowing, triggers - that were not really
available any other way. Beam's various features sometimes requires
just a pass-through API and sometimes requires clever new
implementation. And everything is moving constantly. I don't see
Beam as following the features of any engine, but rather coming up
with new needed data processing abstractions and figuring out how
to efficiently implement them on top of various architectures.
Kenn
On Tue, Apr 30, 2019 at 8:37 AM kant kodali <kanth...@gmail.com>
wrote:
Staying behind doesn't imply one is better than the other and I
didn't mean that in any way but I fail to see how an abstraction
framework like Beam can stay ahead of the underlying execution
engines?
For example, If a new feature is added into the underlying
execution engine that doesn't fit the interface of Beam or breaks
then I would think the interface would need to be changed. Another
example would say the underlying execution engines take different
kind's of parameters for the same feature then it isn't so
straight forward to come up with an interface since there might be
very little in common in the first place so, in that sense, I fail
to see how Beam can stay ahead.
"Of course the API itself is Spark-specific, but it borrows
heavily (among other things) on ideas that Beam itself pioneered
long before Spark 2.0" Good to know.
"one of the things Beam has focused on was a language portability
framework" Sure but how important is this for a typical user? Do
people stop using a particular tool because it is in an X
language? I personally would put features first over language
portability and it's completely fine that may not be in line with
Beam's priorities. All said I can agree Beam focus on language
portability is great.
On Tue, Apr 30, 2019 at 2:48 AM Maximilian Michels
<m...@apache.org> wrote:
I wouldn't say one is, or will always be, in front of or behind
another.
That's a great way to phrase it. I think it is very common to
jump to
the conclusion that one system is better than the other. In
reality it's
often much more complicated.
For example, one of the things Beam has focused on was a language
portability framework. Do I get this with Flink? No. Does that
mean Beam
is better than Flink? No. Maybe a better question would be, do I
want to
be able to run Python pipelines?
This is just an example, there are many more factors to consider.
Cheers,
Max
On 30.04.19 10:59, Robert Bradshaw wrote:
Though we all certainly have our biases, I think it's fair to
say that
all of these systems are constantly innovating, borrowing ideas
from
one another, and have their strengths and weaknesses. I wouldn't
say
one is, or will always be, in front of or behind another.
Take, as the given example Spark Structured Streaming. Of course
the
API itself is spark-specific, but it borrows heavily (among other
things) on ideas that Beam itself pioneered long before Spark 2.0,
specifically the unification of batch and streaming processing
into a
single API, and the event-time based windowing (triggering)
model for
consistently and correctly handling distributed, out-of-order data
streams.
Of course there are also operational differences. Spark, for
example,
is very tied to the micro-batch style of execution whereas Flink is
fundamentally very continuous, and Beam delegates to the underlying
runner.
It is certainly Beam's goal to keep overhead minimal, and one of
the
primary selling points is the flexibility of portability (of
both the
execution runtime and the SDK) as your needs change.
- Robert
On Tue, Apr 30, 2019 at 5:29 AM <kanth...@gmail.com> wrote:
Ofcourse! I suspect beam will always be one or two step
backwards to the new functionality that is available or yet to
come.
For example: Spark Structured Streaming is still not available,
no CEP apis yet and much more.
Sent from my iPhone
On Apr 30, 2019, at 12:11 AM, Pankaj Chand
<pankajchanda...@gmail.com> wrote:
Will Beam add any overhead or lack certain API/functions
available in Spark/Flink?