@Chamikara Jayalath<mailto:[email protected]> Sorry about the confusion. But
I did more testing and using the spark runner actually yields the same error:
java.lang.ClassCastException: shaded.org.apache.avro.generic.GenericData$Record
cannot be cast to java.lang.Number
at
shaded.org.apache.avro.generic.GenericDatumWriter.writeWithoutConversion(GenericDatumWriter.java:130)
at
shaded.org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:75)
at
shaded.org.apache.avro.generic.GenericDatumWriter.writeArray(GenericDatumWriter.java:192)
at
shaded.org.apache.avro.generic.GenericDatumWriter.writeWithoutConversion(GenericDatumWriter.java:120)
at
shaded.org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:75)
at
shaded.org.apache.avro.generic.GenericDatumWriter.writeField(GenericDatumWriter.java:166)
at
shaded.org.apache.avro.generic.GenericDatumWriter.writeRecord(GenericDatumWriter.java:156)
at
shaded.org.apache.avro.generic.GenericDatumWriter.writeWithoutConversion(GenericDatumWriter.java:118)
at
shaded.org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:75)
at
shaded.org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:62)
at
org.apache.beam.sdk.coders.AvroCoder.encode(AvroCoder.java:317)
at org.apache.beam.sdk.coders.Coder.encode(Coder.java:136)
at org.apache.beam.sdk.coders.KvCoder.encode(KvCoder.java:73)
at org.apache.beam.sdk.coders.KvCoder.encode(KvCoder.java:37)
at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.encode(WindowedValue.java:591)
at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.encode(WindowedValue.java:582)
at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.encode(WindowedValue.java:542)
at
org.apache.beam.runners.spark.coders.CoderHelpers.toByteArray(CoderHelpers.java:55)
at
org.apache.beam.runners.spark.translation.GroupNonMergingWindowsFunctions.lambda$groupByKeyAndWindow$c9b6f5c4$1(GroupNonMergingWindowsFunctions.java:86)
at
org.apache.beam.runners.spark.translation.GroupNonMergingWindowsFunctions.lambda$bringWindowToKey$0(GroupNonMergingWindowsFunctions.java:129)
at
org.apache.beam.vendor.guava.v26_0_jre.com.google.common.collect.Iterators$6.transform(Iterators.java:785)
at
org.apache.beam.vendor.guava.v26_0_jre.com.google.common.collect.TransformedIterator.next(TransformedIterator.java:47)
at
scala.collection.convert.Wrappers$JIteratorWrapper.next(Wrappers.scala:43)
at scala.collection.Iterator$$anon$12.next(Iterator.scala:445)
at
org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at
org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at
org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
From: Chamikara Jayalath <[email protected]>
Reply-To: "[email protected]" <[email protected]>
Date: Friday, January 29, 2021 at 10:53 AM
To: user <[email protected]>
Subject: Re: Potential bug with ParquetIO.read when reading arrays
Thanks. It might be something good to document in case other users run into
this as well. Can you file a JIRA with the details ?
On Fri, Jan 29, 2021 at 10:47 AM Tao Li
<[email protected]<mailto:[email protected]>> wrote:
OK I think this issue is due to incompatibility between the parquet files
(created with spark 2.4) and parquet version as a dependency of ParquetIO 2.25.
It seems working after I switch to spark runner (from direct runner) and run
the beam app in a spark cluster. I assume by doing this I am basically using
parquet jars from spark distributable directly and now everything is compatible.
From: Tao Li <[email protected]<mailto:[email protected]>>
Reply-To: "[email protected]<mailto:[email protected]>"
<[email protected]<mailto:[email protected]>>
Date: Friday, January 29, 2021 at 7:45 AM
To: "[email protected]<mailto:[email protected]>"
<[email protected]<mailto:[email protected]>>
Subject: Re: Potential bug with ParquetIO.read when reading arrays
Hi community,
Can someone take a look at this issue? It is kind of a blocker to me right now.
Really appreciate your help!
From: Tao Li <[email protected]<mailto:[email protected]>>
Reply-To: "[email protected]<mailto:[email protected]>"
<[email protected]<mailto:[email protected]>>
Date: Thursday, January 28, 2021 at 6:13 PM
To: "[email protected]<mailto:[email protected]>"
<[email protected]<mailto:[email protected]>>
Subject: Re: Potential bug with ParquetIO.read when reading arrays
BTW I tried avro 1.8 and 1.9 and both have the same error. So we can probably
rule out any avro issue.
From: Tao Li <[email protected]<mailto:[email protected]>>
Reply-To: "[email protected]<mailto:[email protected]>"
<[email protected]<mailto:[email protected]>>
Date: Thursday, January 28, 2021 at 9:07 AM
To: "[email protected]<mailto:[email protected]>"
<[email protected]<mailto:[email protected]>>
Subject: Potential bug with ParquetIO.read when reading arrays
Hi Beam community,
I am seeing an error when reading an array field using ParquetIO. I was using
beam 2.25 and the direct runner for testing. Is this a bug or a known issue? Am
I missing anything here? Please help me root cause this issue. Thanks so much!
Attached are the avro schema and the parquet file. Below is the schema tree as
a quick visualization. The array field name is “list” and the element type is
int. You can see this schema defined in the avsc file as well.
root
|-- list: array (nullable = true)
| |-- element: integer (containsNull = true)
The beam code is very simple:
pipeline.apply(ParquetIO.read(avroSchema).from(parquetPath));
Here is the error when running that code:
[direct-runner-worker] INFO
shaded.org.apache.parquet.hadoop.InternalParquetRecordReader - block read in
memory in 130 ms. row count = 1
Exception in thread "main"
org.apache.beam.sdk.Pipeline$PipelineExecutionException:
java.lang.ClassCastException: org.apache.avro.generic.GenericData$Record cannot
be cast to java.lang.Number
at
org.apache.beam.runners.direct.DirectRunner$DirectPipelineResult.waitUntilFinish(DirectRunner.java:353)
at
org.apache.beam.runners.direct.DirectRunner$DirectPipelineResult.waitUntilFinish(DirectRunner.java:321)
at
org.apache.beam.runners.direct.DirectRunner.run(DirectRunner.java:216)
at
org.apache.beam.runners.direct.DirectRunner.run(DirectRunner.java:67)
at org.apache.beam.sdk.Pipeline.run(Pipeline.java:317)
at org.apache.beam.sdk.Pipeline.run(Pipeline.java:303)
Caused by: java.lang.ClassCastException:
org.apache.avro.generic.GenericData$Record cannot be cast to java.lang.Number
at
org.apache.avro.generic.GenericDatumWriter.writeWithoutConversion(GenericDatumWriter.java:156)
at
org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:82)
at
org.apache.avro.generic.GenericDatumWriter.writeArray(GenericDatumWriter.java:234)
at
org.apache.avro.generic.GenericDatumWriter.writeWithoutConversion(GenericDatumWriter.java:136)
at
org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:82)
at
org.apache.avro.generic.GenericDatumWriter.writeField(GenericDatumWriter.java:206)
at
org.apache.avro.generic.GenericDatumWriter.writeRecord(GenericDatumWriter.java:195)
at
org.apache.avro.generic.GenericDatumWriter.writeWithoutConversion(GenericDatumWriter.java:130)
at
org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:82)
at
org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:72)
at
org.apache.beam.sdk.coders.AvroCoder.encode(AvroCoder.java:317)
at org.apache.beam.sdk.coders.Coder.encode(Coder.java:136)
at
org.apache.beam.sdk.util.CoderUtils.encodeToSafeStream(CoderUtils.java:82)
at
org.apache.beam.sdk.util.CoderUtils.encodeToByteArray(CoderUtils.java:66)
at
org.apache.beam.sdk.util.CoderUtils.encodeToByteArray(CoderUtils.java:51)
at
org.apache.beam.sdk.util.CoderUtils.clone(CoderUtils.java:141)
at
org.apache.beam.sdk.util.MutationDetectors$CodedValueMutationDetector.<init>(MutationDetectors.java:115)
at
org.apache.beam.sdk.util.MutationDetectors.forValueWithCoder(MutationDetectors.java:46)
at
org.apache.beam.runners.direct.ImmutabilityCheckingBundleFactory$ImmutabilityEnforcingBundle.add(ImmutabilityCheckingBundleFactory.java:112)
at
org.apache.beam.runners.direct.ParDoEvaluator$BundleOutputManager.output(ParDoEvaluator.java:301)
at
org.apache.beam.repackaged.direct_java.runners.core.SimpleDoFnRunner.outputWindowedValue(SimpleDoFnRunner.java:267)
at
org.apache.beam.repackaged.direct_java.runners.core.SimpleDoFnRunner.access$900(SimpleDoFnRunner.java:79)
at
org.apache.beam.repackaged.direct_java.runners.core.SimpleDoFnRunner$DoFnProcessContext.output(SimpleDoFnRunner.java:413)
at
org.apache.beam.repackaged.direct_java.runners.core.SimpleDoFnRunner$DoFnProcessContext.output(SimpleDoFnRunner.java:401)
at
org.apache.beam.sdk.io.parquet.ParquetIO$ReadFiles$ReadFn.processElement(ParquetIO.java:646)