Hi Fuyao,

sorry for not replying earlier.

You posted a lot of questions. I scanned the thread quickly, let me try to answer some of them and feel free to ask further questions afterwards.

"is it possible to configure the parallelism for Table operation at operator level"

No this is not possible at the moment. The reason is 1) we don't know how to expose such a functionality in a nice way. Maybe we will use SQL hints in the future [1]. 2) Sometime the planner sets the paralellism of operators explicitly to 1. All other operators will use the globally defined parallelism for the pipeline (also to not mess up retraction messages internally). You will be able to set the parallelism of the sink operation in Flink 1.12.

"BoundedOutOfOrderness Watermark Generator is NOT making the event time to advance"

Have you checked if you can use an interval join instead of a full join with state retention? Table/SQL pipelines that don't preserve a time attribute in the end might also erase the underlying watermarks. Thus, event time triggers will not work after your join.

"Why can't I update the watermarks for all 8 parallelisms?"

You could play around with idleness for your source [2]. Or you set the source parallelism to 1 (while keeping the rest of the pipeline globally set to 8), would that be an option?

"Some type cast behavior of retracted streams I can't explain."

toAppendStream/toRetractStream still need an update to the new type system. This is explained in FLIP-136 which will be part of Flink 1.13 [3].

I hope I could help a bit.

Regards,
Timo


[1] https://cwiki.apache.org/confluence/display/FLINK/FLIP-113%3A+Supports+Dynamic+Table+Options+for+Flink+SQL [2] https://ci.apache.org/projects/flink/flink-docs-stable/dev/event_timestamps_watermarks.html#dealing-with-idle-sources [3] https://cwiki.apache.org/confluence/display/FLINK/FLIP-136%3A++Improve+interoperability+between+DataStream+and+Table+API

On 13.11.20 21:39, Fuyao Li wrote:
Hi Matthias,

Just to provide more context on this problem. I only have 1 partition per each Kafka Topic at the beginning before the join operation. After reading the doc: https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/kafka.html#kafka-consumers-and-timestamp-extractionwatermark-emission <https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/kafka.html#kafka-consumers-and-timestamp-extractionwatermark-emission>

Maybe that is the root cause of my problem here, with less than 8 partitions (only 1 partition in my case), using the default parallelism of 8 will cause this wrong behavior. This is my guess, it takes a while to test it out... What's your opinion on this? Thanks!

Best,

Fuyao


On Fri, Nov 13, 2020 at 11:57 AM Fuyao Li <fuyaoli2...@gmail.com <mailto:fuyaoli2...@gmail.com>> wrote:

    Hi Matthias,

    One more question regarding Flink table parallelism, is it possible
    to configure the parallelism for Table operation at operator level,
    it seems we don't have such API available, right? Thanks!

    Best,
    Fuyao

    On Fri, Nov 13, 2020 at 11:48 AM Fuyao Li <fuyaoli2...@gmail.com
    <mailto:fuyaoli2...@gmail.com>> wrote:

        Hi Matthias,

        Thanks for your information. I have managed to figure out the
        first issue you mentioned. Regarding the second issue. I have
        got some progress on it.

        I have sent another email with the title 'BoundedOutOfOrderness
        Watermark Generator is NOT making the event time to advance'
        using another email of mine, fuyao...@oracle.com
        <mailto:fuyao...@oracle.com>. That email contains some more
        context on my issue. Please take a look. I have made some
        progress after sending that new email.

        Previously, I had managed to make timelag watermark strategy
        working in my code, but my bound out of orderness strategy or
        punctuated watermark strategy doesn't work well. It produces 8
        watermarks each time. Two cycles are shown below.

        I managed to figure out the root cause is that Flink stream
        execution environment has a default parallelism as 8.*I didn't
        notice in the doc, could the Community add this explicitly into
        the official doc to avoid some confusion? Thanks.*

         From my understanding, the watermark advances based on the
        lowest watermark among the 8, so I can not advance the bound out
        of orderness watermark since I am only advancing 1 of the 8
        parallelisms. If I set the entire stream execution environment
        to be of parallelism 1, it will reflect the watermark in the
        context correctly. One more thing is that this behavior is not
        reflected in the Flink Cluster web UI interface. I can see the
        watermark is advancing, but it is not in reality. *That's
        causing the inconsistency problem I mentioned in the other email
        I mentioned above. Will this be considered as a bug in the UI?*

        My current question is, since I have full outer join operation
        before the KeyedProcessFunction here. How can I let the bound of
        orderness watermark / punctuated watermark strategy work if the
        parallelism > 1? It can only update one of the 8 parallelisms
        for the watermark for this onTimer operator. Is this related to
        my Table full outer join operation before this step? According
        to the doc,
        
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/config.html#table-exec-resource-default-parallelism
        
<https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/config.html#table-exec-resource-default-parallelism>

        Default parallelism should be the same like the stream
        environment. Why can't I update the watermarks for all 8
        parallelisms? What should I do to enable this function with
        Parallelism larger than 1? Thanks.

        First round: (Note the first column of each log row is the
        timelag strategy, it is getting updated correctly for all 8
        parallelism, but the other two strategies I mentioned above
        can't do that..)

        14:28:01,199 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047266198,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:01,199 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047266199,
        periodicEmitWatermarkTime: 1605047172881, currentMaxTimestamp:
        1605047187881 (only one of the 8 parallelism for bound out of
        orderness is getting my new watermark)
        14:28:01,199 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047266199,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:01,199 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047266198,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:01,199 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047266198,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:01,199 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047266198,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:01,199 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047266198,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:01,199 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047266198,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000

        Second round: (I set the autoWatermark interval to be 5 seconds)
        14:28:06,200 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047271200,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:06,200 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047271200,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:06,200 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047271200,
        periodicEmitWatermarkTime: 1605047172881, currentMaxTimestamp:
        1605047187881
        14:28:06,200 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047271200,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:06,200 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047271200,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:06,200 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047271200,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:06,200 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047271200,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000
        14:28:06,200 INFO
        org.myorg.quickstart.operator.PeriodicTableOutputWatermarkGenerator
        - Emit Watermark: watermark based on system time: 1605047271200,
        periodicEmitWatermarkTime: 0, currentMaxTimestamp: 15000


        Best regards,

        Fuyao


        On Fri, Nov 13, 2020 at 9:03 AM Matthias Pohl
        <matth...@ververica.com <mailto:matth...@ververica.com>> wrote:

            Hi Fuyao,
            for your first question about the different behavior
            depending on whether you chain the methods or not: Keep in
            mind that you have to save the return value of the
            assignTimestampsAndWatermarks method call if you don't chain
            the methods together as it is also shown in [1].
            At least the following example from your first message is
            indicating it:
            ```
            retractStream.assignTimestampsAndWatermarks(new
            BoRetractStreamTimestampAssigner()); (This is a deprecated
            method)
            // instead of: retractStream =
            retractStream.assignTimestampsAndWatermarks(new
            BoRetractStreamTimestampAssigner());
            retractStream
                 .keyBy(<key selector>)
                 .process(new TableOutputProcessFunction())
                 .name("ProcessTableOutput")
                 .uid("ProcessTableOutput")
                 .addSink(businessObjectSink)
                 .name("businessObjectSink")
                 .uid("businessObjectSink")
                 .setParallelism(1);
            ```

            For your second question about setting the EventTime I'm
            going to pull in Timo from the SDK team as I don't see an
            issue with your code right away.

            Best,
            Matthias

            [1]
            
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/event_timestamps_watermarks.html#using-watermark-strategies
            
<https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/event_timestamps_watermarks.html#using-watermark-strategies>

            On Wed, Nov 4, 2020 at 10:16 PM Fuyao Li
            <fuyaoli2...@gmail.com <mailto:fuyaoli2...@gmail.com>> wrote:

                Hi Flink Users and Community,

                For the first part of the question, the 12 hour time
                difference is caused by a time extraction bug myself. I
                can get the time translated correctly now. The type cast
                problem does have some workarounds to solve it..

                My major blocker right now is the onTimer part is not
                properly triggered. I guess it is caused by failing to
                configure the correct watermarks & timestamp assigners.
                Please give me some insights.

                1. If I don't chain the assignTimestampsAndWatermarks()
                method in together with keyedBy().. and process()..
                method. The context.timestamp() in my processElement()
                function will be null. Is this some expected behavior?
                The Flink examples didn't chain it together. (see
                example here:
                
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/event_timestamps_watermarks.html#using-watermark-strategies
                
<https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/event_timestamps_watermarks.html#using-watermark-strategies>)
                2. If I use registerEventTimeTimer() in
                processElement(). The onTimer method will not be
                triggered. However, I can trigger the onTimer method if
                I simply change it to registerProcessingTimeTimer(). I
                am using the settings below in the stream env.

                env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
                env.getConfig().setAutoWatermarkInterval(1000L);

                My code for method the process chain:
                retractStream
.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<Boolean,
                Row>>forBoundedOutOfOrderness(Duration.ofSeconds(20))
.withTimestampAssigner((booleanRowTuple2, timestamp) -> {
                                             Row rowData =
                booleanRowTuple2.f1;
                                             LocalDateTime headerTime =
                (LocalDateTime)rowData.getField(3);
                                             LocalDateTime linesTime =
                (LocalDateTime)rowData.getField(7);

                                             LocalDateTime
                latestDBUpdateTime = null;
                                             if (headerTime != null &&
                linesTime != null) {
                                                 latestDBUpdateTime =
                headerTime.isAfter(linesTime) ? headerTime : linesTime;
                                             }
                                             else {
                                                 latestDBUpdateTime =
                (headerTime != null) ? headerTime : linesTime;
                                             }
                                             if (latestDBUpdateTime !=
                null) {
                                                 return
                
latestDBUpdateTime.atZone(ZoneId.of("America/Los_Angeles")).toInstant().toEpochMilli();
                                             }
                                             // In the worst case, we
                use system time instead, which should never be reached.
                                             return
                System.currentTimeMillis();
                                         }))
                //              .assignTimestampsAndWatermarks(new
                MyWaterStrategy())  // second way to create watermark,
                doesn't work
                                 .keyBy(value -> {
                                     // There could be null fields for
                header invoice_id field
                                     String invoice_id_key =
                (String)value.f1.getField(0);
                                     if (invoice_id_key == null) {
                                         invoice_id_key =
                (String)value.f1.getField(4);
                                     }
                                     return invoice_id_key;
                                 })
                                 .process(new TableOutputProcessFunction())
                                 .name("ProcessTableOutput")
                                 .uid("ProcessTableOutput")
                                 .addSink(businessObjectSink)
                                 .name("businessObjectSink")
                                 .uid("businessObjectSink")
                                 .setParallelism(1);

                Best regards,
                Fuyao

                On Mon, Nov 2, 2020 at 4:53 PM Fuyao Li
                <fuyaoli2...@gmail.com <mailto:fuyaoli2...@gmail.com>>
                wrote:

                    Hi Flink Community,

                    I am doing some research work on Flink Datastream
                    and Table API and I meet two major problems. I am
                    using Flink 1.11.2, scala version 2.11, java 8. My
                    use case looks like this. I plan to write a data
                    processing pipeline with two stages. My goal is to
                    construct a business object containing information
                    from several Kafka streams with a primary key and
                    emit the complete business object if such primary
                    key doesn't  appear in the pipeline for 10 seconds.

                    In the first stage, I first consume three Kafka
                    streams and transform it to Flink Datastream using a
                    deserialization schema containing some type and date
                    format transformation, and then I register these
                    data streams as Table and do a full outer join one
                    by one using Table API. I also add query
                    configuration for this to avoid excessive state. The
                    primary key is also the join key.

                    In the second stage, I transform the joined table to
                    a retracted stream and put it into
                    KeyedProcessFunction to generate the business object
                    if the business object's primary key is inactive for
                    10 second.

                    Is this way of handling the data the suggested
                    approach? (I understand I can directly consume kafka
                    data in Table API. I haven't tried that yet, maybe
                    that's better?) Any suggestion is welcomed. During
                    implementing this, I meet two major problems and
                    several smaller questions under each problem.


                    1. Some type cast behavior of retracted streams I
                    can't explain.

                    (1) In the initial stage, I registered some field as
                    *java.sql.Date* or *java.sql.timestamp* following
                    the examples at
                    
(https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/types.html#data-type-extraction
                    
<https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/types.html#data-type-extraction>)
                    . After join and transform to retracted stream, it
                    becomes *java.time.LocalDate* and
                    *java.time.LocalDateTime* instead.

                    For example, when first ingesting the Kafka streams,
                    I registerd a attribute in java.sql.Timestamp type.

                      @JsonAlias("ATTRIBUTE1")
                      private @DataTypeHint(value = "TIMESTAMP(6)",
                    bridgedTo = java.sql.Timestamp.class) Timestamp
                    ATTRIBUTE1;

                    When I tried to cast the type information back after
                    the retracted stream, the code gives me error
                    information below.

                      java.lang.ClassCastException:
                    java.time.LocalDateTime cannot be cast to
                    java.sql.Timestamp

                    Maybe I should use toAppendStream instead since
                    append stream could register type information, but
                    toRetractedStream can't do that?
                    
(https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/common.html#convert-a-table-into-a-datastream-or-dataset
                    
<https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/common.html#convert-a-table-into-a-datastream-or-dataset>)

                    My work around is to cast it to LocalDateTime first
                    and extract the epoch time, this doesn't seem to be
                    a final solution.

                    (2) During timestamp conversion, the Flink to
                    retracted stream seems to lost the AM/PM information
                    in the stream and causing a 12 hour difference if it
                    is PM.

                    I use joda time to do some timestamp conversion in
                    the first deserialization stage, my pattern looks
                    like this. "a" means AM/PM information

                      DateTimeFormatter format3 =
                    DateTimeFormat.forPattern("dd-MMM-yy HH.mm.ss.SSSSSS
                    a").withZone(DateTimeZone.getDefault());

                    After the retracted stream, the AM/PM information is
                    not preserved.


                    2. My onTimer method in KeyedProcessFunction can not
                    be triggered when I scheduled a event timer timer.

                    I am using event time in my code. I am new to
                    configure watermarks and I might miss something to
                    configure it correctly. I also tried to register a
                    processing time, it could enter and produce some
                    results.

                    I am trying to follow the example here:
                    
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/process_function.html#example
                    
<https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/process_function.html#example>

                    My onTimer method looks like this and the scheduled
                    event doesn't happen..

                    In processElement():

                    
context.timerService().registerEventTimeTimer(current.getLastModifiedTime()
                    + 10000);

                    My onTimer function

                       @Override
                         public void onTimer(long timestamp,
                    OnTimerContext ctx, Collector<BusinessObject>
                    collector) throws Exception {
                             TestBusinessObjectState result =
                    testBusinessObjectState.value();
                    log.info <http://log.info/>("Inside onTimer Method,
                    current key: {}, timestamp: {}, last modified time:
                    {}", ctx.getCurrentKey(), timestamp,
                    result.getLastModifiedTime());

                             // check if this is an outdated timer or
                    the latest timer
                             if (timestamp >=
                    result.getLastModifiedTime() + 10000) {
                                 // emit the state on timeout
                    log.info <http://log.info/>("Collecting a business
                    object, {}", result.getBusinessObject().toString());
collector.collect(result.getBusinessObject());

                                 cleanUp(ctx);
                             }
                         }

                         private void cleanUp(Context ctx) throws
                    Exception {
                             Long timer =
                    testBusinessObjectState.value().getLastModifiedTime();
                             ctx.timerService().deleteEventTimeTimer(timer);
                             testBusinessObjectState.clear();
                         }


                    (1) When I assign the timestamp and watermarks
                    outside the process() method chain. The
                    "context.timestamp()" will be null. If I put it
                    inside the chain, it won't be null. Is this the
                    expected behavior? In the null case, the strange
                    thing is that, surprisingly, I can collect the
                    business object immediately without a designed 10
                    second waiting time... This shouldn't happen,
                    right...? The processing timer also seems to work.
                    The code can enter the on timer method.

                      retractStream.assignTimestampsAndWatermarks(new
                    BoRetractStreamTimestampAssigner()); (This is a
                    deprecated method)

                      retractStream
                         .keyBy(<key selector>)
                         .process(new TableOutputProcessFunction())
                         .name("ProcessTableOutput")
                         .uid("ProcessTableOutput")
                         .addSink(businessObjectSink)
                         .name("businessObjectSink")
                         .uid("businessObjectSink")
                         .setParallelism(1);

                    (2) For watermarks configuration. I use an field in
                    the retracted stream as the event time. This time is
                    usually 15-20 seconds before current time.

                    In my environment, I have done some settings for
                    streaming env based on information here(
                    
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/event_timestamps_watermarks.html#writing-a-periodic-watermarkgenerator
                    
<https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/event_timestamps_watermarks.html#writing-a-periodic-watermarkgenerator>).
                    My event doesn't always come, so I think I need to
                    set auto watermark interval to let the event timer
                    on timer works correctly. I have added the code below.

                    
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
                    env.getConfig().setAutoWatermarkInterval(1000L);

                    1> Which kind of watermark strategy should I use?
                    General BoundOutofOrderness or Watermark generator?

                    I tried to write a Watermark generator and I just
                    don't how to apply it to the stream correctly. The
                    documentation doesn't explain very clearly. My code
                    looks like below and it doesn't work.

                    assign part:

                    
.assignTimestampsAndWatermarks(WatermarkStrategy.forGenerator((WatermarkGeneratorSupplier<Tuple2<Boolean,
                    Row>>) context -> new
                    TableBoundOutofOrdernessGenerator()))

                    watermark generater:

                    I just assign the event time attribute following the
                    example in the doc.
                    
(https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/event_timestamps_watermarks.html#writing-a-periodic-watermarkgenerator
                    
<https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/event_timestamps_watermarks.html#writing-a-periodic-watermarkgenerator>)

                    2> I also tried to use the static method in Water
                    Strategy. The syntax is correct, but I meet the same
                    problem in 2.(1).

.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<Boolean,
                    Row>>forBoundedOutOfOrderness(Duration.ofSeconds(15))
.withTimestampAssigner((booleanRowTuple2, timestamp)
                    -> {
                                                 <Select a event time
                    attribute in the booleanRowTuple2>
                                             }))


                    (3) For the retracted datastream, do I need to
                    explicitly attach it to the stream environment? I
                    think it is done by default, right? Just want to
                    confirm it. I do have the env.execute() at the end
                    of the code.

                    I understand this is a lot of questions, thanks a
                    lot for your patience to look through my email! If
                    there is anything unclear, please reach out to me.
                    Thanks!


                    Best regards,

                    Fuyao Li


Reply via email to