I was using Yarn and HDFS on EC2 and EBS, with default memory settings. I have just read in the Hadoop guide a list of hadoop benchmark jars. I guess i'll use Whirr to create a canned hadoop cluster on ec2, and run these benchmarks. So i will have a baseline to which i can compare. Then i'll compare with my own install of hadoop stack
-- Alexandre Fouche Lead operations engineer, cloud architect http://www.cleverscale.com | @cleverscale Sent with Sparrow (http://www.sparrowmailapp.com/?sig) On Wednesday 31 October 2012 at 21:27, Marcos Ortiz wrote: > > On 10/31/2012 02:23 PM, Michael Segel wrote: > > Not sure. > > > > Lots of things can effect your throughput. > > Networking is my first guess. Which is why I asked about the number of > > times you've run the same test to see if there is a wide variation in > > timings. > > > > On Oct 31, 2012, at 7:37 AM, Alexandre Fouche > > <alexandre.fou...@cleverscale.com > > (mailto:alexandre.fou...@cleverscale.com)> wrote: > > > These instances have no swap. I tried 5 or 6 times in a row, and modified > > > the yarn.nodemanager.resource.memory-mb but it did not help. Later on, > > > i'll replace the openjdk with the Oracle java SE 1.6.31 to see if it > > > improves overall performance. > How many RAM do you have, and how much of it is assigned to your Hadoop > services? > > > > Now i am running everything on medium instances for prototyping, and > > > while this is better, i still find it abusively slow. Maybe bad hadoop > > > performance on less than xlarge memory instances is to be expected on EC2 > > > ? Are you using Hadoop on top of EC2 or are you using the EMR service? > > > > > > > > > > -- > > > Alexandre Fouche > > > Lead operations engineer, cloud architect > > > http://www.cleverscale.com | @cleverscale > > > Sent with Sparrow (http://www.sparrowmailapp.com/?sig) > > > > > > > > > On Monday 29 October 2012 at 20:04, Michael Segel wrote: > > > > > > > how many times did you test it? > > > > > > > > need to rule out aberrations. > > > > > > > > On Oct 29, 2012, at 11:30 AM, Harsh J <ha...@cloudera.com > > > > (mailto:ha...@cloudera.com)> wrote: > > > > > > > > > On your second low-memory NM instance, did you ensure to lower the > > > > > yarn.nodemanager.resource.memory-mb property specifically to avoid > > > > > swapping due to excessive resource grants? The default offered is 8 GB > > > > > (>> 1.7 GB you have). > > > > > > > > > > On Mon, Oct 29, 2012 at 8:42 PM, Alexandre Fouche > > > > > <alexandre.fou...@cleverscale.com > > > > > (mailto:alexandre.fou...@cleverscale.com)> wrote: > > > > > > Hi, > > > > > > > > > > > > Can someone give some insight on why a "distcp" of 600 files of a > > > > > > few > > > > > > hundred bytes from s3n:// to local hdfs is taking 46s when using a > > > > > > yarn-nodemanager EC2 instance with 16GB memory (which by the way i > > > > > > think is > > > > > > jokingly long), and taking 3mn30s when adding a second > > > > > > yarn-nodemanager (a > > > > > > small instance with 1.7GB memory) ? > > > > > > I would have expected it to be a bit faster, not 5xlonger ! > > > > > > > > > > > > I have the same issue when i stop the small instance nodemanager > > > > > > and restart > > > > > > it to join the processing after the big nodemanager instance was > > > > > > already > > > > > > submitted the job. > > > > > > > > > > > > I am using Cloudera latest Yarn+HDFS on Amazon (rebranded Centos 6) > > > > > > > > > > > > > > > > > > #Staging 14:58:04 root@datanode2:hadoop-yarn: rpm -qa |grep hadoop > > > > > > hadoop-hdfs-datanode-2.0.0+545-1.cdh4.1.1.p0.5.el6.x86_64 > > > > > > hadoop-mapreduce-2.0.0+545-1.cdh4.1.1.p0.5.el6.x86_64 > > > > > > hadoop-0.20-mapreduce-0.20.2+1261-1.cdh4.1.1.p0.4.el6.x86_64 > > > > > > hadoop-yarn-nodemanager-2.0.0+545-1.cdh4.1.1.p0.5.el6.x86_64 > > > > > > hadoop-mapreduce-historyserver-2.0.0+545-1.cdh4.1.1.p0.5.el6.x86_64 > > > > > > hadoop-hdfs-2.0.0+545-1.cdh4.1.1.p0.5.el6.x86_64 > > > > > > hadoop-client-2.0.0+545-1.cdh4.1.1.p0.5.el6.x86_64 > > > > > > hadoop-2.0.0+545-1.cdh4.1.1.p0.5.el6.x86_64 > > > > > > hadoop-yarn-2.0.0+545-1.cdh4.1.1.p0.5.el6.x86_64 > > > > > > > > > > > > > > > > > > #Staging 14:39:51 root@resourcemanager:hadoop-yarn: > > > > > > HADOOP_MAPRED_HOME=/usr/lib/hadoop-mapreduce time hadoop distcp > > > > > > -overwrite > > > > > > s3n://xxx:xxx@s3n.hadoop.cwsdev (mailto:xxx@s3n.hadoop.cwsdev)/* > > > > > > hdfs:///tmp/something/a > > > > > > > > > > > > 12/10/29 14:40:12 INFO tools.DistCp: Input Options: > > > > > > DistCpOptions{atomicCommit=false, syncFolder=false, > > > > > > deleteMissing=false, > > > > > > ignoreFailures=false, maxMaps=20, sslConfigurationFile='null', > > > > > > copyStrategy='uniformsize', sourceFileListing=null, > > > > > > sourcePaths=[s3n://xxx:xxx@s3n.hadoop.cwsdev > > > > > > (mailto:xxx@s3n.hadoop.cwsdev)/*], > > > > > > targetPath=hdfs:/tmp/something/a} > > > > > > 12/10/29 14:40:18 WARN conf.Configuration: io.sort.mb is deprecated. > > > > > > Instead, use mapreduce.task.io.sort.mb > > > > > > 12/10/29 14:40:18 WARN conf.Configuration: io.sort.factor is > > > > > > deprecated. > > > > > > Instead, use mapreduce.task.io.sort.factor > > > > > > 12/10/29 14:40:19 INFO mapreduce.JobSubmitter: number of splits:15 > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: mapred.jar is deprecated. > > > > > > Instead, use mapreduce.job.jar > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: > > > > > > mapred.map.tasks.speculative.execution is deprecated. Instead, use > > > > > > mapreduce.map.speculative > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: mapred.reduce.tasks is > > > > > > deprecated. Instead, use mapreduce.job.reduces > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: > > > > > > mapred.mapoutput.value.class > > > > > > is deprecated. Instead, use mapreduce.map.output.value.class > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: mapreduce.map.class is > > > > > > deprecated. Instead, use mapreduce.job.map.class > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: mapred.job.name > > > > > > (http://mapred.job.name/) is > > > > > > deprecated. Instead, use mapreduce.job.name > > > > > > (http://mapreduce.job.name/) > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: > > > > > > mapreduce.inputformat.class > > > > > > is deprecated. Instead, use mapreduce.job.inputformat.class > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: mapred.output.dir is > > > > > > deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: > > > > > > mapreduce.outputformat.class > > > > > > is deprecated. Instead, use mapreduce.job.outputformat.class > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: mapred.map.tasks is > > > > > > deprecated. Instead, use mapreduce.job.maps > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: > > > > > > mapred.mapoutput.key.class is > > > > > > deprecated. Instead, use mapreduce.map.output.key.class > > > > > > 12/10/29 14:40:19 WARN conf.Configuration: mapred.working.dir is > > > > > > deprecated. Instead, use mapreduce.job.working.dir > > > > > > 12/10/29 14:40:20 INFO mapred.ResourceMgrDelegate: Submitted > > > > > > application > > > > > > application_1351504801306_0015 to ResourceManager at > > > > > > resourcemanager.cwsdev.cleverscale.com/10.60.106.130:8032 > > > > > > (http://resourcemanager.cwsdev.cleverscale.com/10.60.106.130:8032) > > > > > > 12/10/29 14:40:20 INFO mapreduce.Job: The url to track the job: > > > > > > http://ip-10-60-106-130.ec2.internal:8088/proxy/application_1351504801306_0015/ > > > > > > 12/10/29 14:40:20 INFO tools.DistCp: DistCp job-id: > > > > > > job_1351504801306_0015 > > > > > > 12/10/29 14:40:20 INFO mapreduce.Job: Running job: > > > > > > job_1351504801306_0015 > > > > > > 12/10/29 14:40:27 INFO mapreduce.Job: Job job_1351504801306_0015 > > > > > > running > > > > > > in uber mode : false > > > > > > 12/10/29 14:40:27 INFO mapreduce.Job: map 0% reduce 0% > > > > > > 12/10/29 14:40:42 INFO mapreduce.Job: map 6% reduce 0% > > > > > > 12/10/29 14:40:43 INFO mapreduce.Job: map 33% reduce 0% > > > > > > 12/10/29 14:40:44 INFO mapreduce.Job: map 40% reduce 0% > > > > > > 12/10/29 14:40:48 INFO mapreduce.Job: map 46% reduce 0% > > > > > > 12/10/29 14:43:04 INFO mapreduce.Job: map 56% reduce 0% > > > > > > 12/10/29 14:43:05 INFO mapreduce.Job: map 58% reduce 0% > > > > > > 12/10/29 14:43:08 INFO mapreduce.Job: map 62% reduce 0% > > > > > > 12/10/29 14:43:09 INFO mapreduce.Job: map 68% reduce 0% > > > > > > 12/10/29 14:43:15 INFO mapreduce.Job: map 75% reduce 0% > > > > > > 12/10/29 14:43:16 INFO mapreduce.Job: map 82% reduce 0% > > > > > > 12/10/29 14:43:25 INFO mapreduce.Job: map 85% reduce 0% > > > > > > 12/10/29 14:43:26 INFO mapreduce.Job: map 87% reduce 0% > > > > > > 12/10/29 14:43:29 INFO mapreduce.Job: map 90% reduce 0% > > > > > > 12/10/29 14:43:35 INFO mapreduce.Job: map 93% reduce 0% > > > > > > 12/10/29 14:43:37 INFO mapreduce.Job: map 96% reduce 0% > > > > > > 12/10/29 14:43:40 INFO mapreduce.Job: map 100% reduce 0% > > > > > > 12/10/29 14:43:40 INFO mapreduce.Job: Job job_1351504801306_0015 > > > > > > completed successfully > > > > > > 12/10/29 14:43:40 INFO mapreduce.Job: Counters: 35 > > > > > > File System Counters > > > > > > FILE: Number of bytes read=1800 > > > > > > FILE: Number of bytes written=1050895 > > > > > > FILE: Number of read operations=0 > > > > > > FILE: Number of large read operations=0 > > > > > > FILE: Number of write operations=0 > > > > > > HDFS: Number of bytes read=22157 > > > > > > HDFS: Number of bytes written=101379 > > > > > > HDFS: Number of read operations=519 > > > > > > HDFS: Number of large read operations=0 > > > > > > HDFS: Number of write operations=201 > > > > > > S3N: Number of bytes read=101379 > > > > > > S3N: Number of bytes written=0 > > > > > > S3N: Number of read operations=0 > > > > > > S3N: Number of large read operations=0 > > > > > > S3N: Number of write operations=0 > > > > > > Job Counters > > > > > > Launched map tasks=15 > > > > > > Other local map tasks=15 > > > > > > Total time spent by all maps in occupied slots (ms)=12531208 > > > > > > Total time spent by all reduces in occupied slots (ms)=0 > > > > > > Map-Reduce Framework > > > > > > Map input records=57 > > > > > > Map output records=0 > > > > > > Input split bytes=2010 > > > > > > Spilled Records=0 > > > > > > Failed Shuffles=0 > > > > > > Merged Map outputs=0 > > > > > > GC time elapsed (ms)=42324 > > > > > > CPU time spent (ms)=54890 > > > > > > Physical memory (bytes) snapshot=2923872256 > > > > > > Virtual memory (bytes) snapshot=12526301184 > > > > > > Total committed heap usage (bytes)=1618280448 > > > > > > File Input Format Counters > > > > > > Bytes Read=20147 > > > > > > File Output Format Counters > > > > > > Bytes Written=0 > > > > > > org.apache.hadoop.tools.mapred.CopyMapper$Counter > > > > > > BYTESCOPIED=101379 > > > > > > BYTESEXPECTED=101379 > > > > > > COPY=57 > > > > > > > > > > > > 6.90user 0.59system 3:29.17elapsed 3%CPU (0avgtext+0avgdata > > > > > > 819392maxresident)k > > > > > > 0inputs+344outputs (0major+62847minor)pagefaults 0swaps > > > > > > > > > > > > > > > > > > > > > > > > -- > > > > > > Alexandre Fouche > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > -- > > > > > Harsh J > > > > > > > > > > > > > > > > > > > > > > > > > (http://www.uci.cu/)> > -- > Marcos Luis OrtÃz Valmaseda > about.me/marcosortiz (http://about.me/marcosortiz) > @marcosluis2186 (http://twitter.com/marcosluis2186) > > (http://www.uci.cu/)