Hi,

We are observing with certain regularity that our Spark  jobs, as Mesos
framework, are hoarding resources and not releasing them, resulting in
resource starvation to all jobs running on the Mesos cluster.

For example:
This is a job that has spark.cores.max = 4 and spark.executor.memory="3g"

IDFrameworkHostCPUsMem…5050-16506-1146497FooStreamingdnode-4.hdfs.private713.4
GB…5050-16506-1146495FooStreaming
dnode-0.hdfs.private16.4 GB…5050-16506-1146491FooStreaming
dnode-5.hdfs.private711.9 GB…5050-16506-1146449FooStreaming
dnode-3.hdfs.private74.9 GB…5050-16506-1146247FooStreaming
dnode-1.hdfs.private0.55.9 GB…5050-16506-1146226FooStreaming
dnode-2.hdfs.private37.9 GB…5050-16506-1144069FooStreaming
dnode-3.hdfs.private18.7 GB…5050-16506-1133091FooStreaming
dnode-5.hdfs.private11.7 GB…5050-16506-1133090FooStreaming
dnode-2.hdfs.private55.2 GB…5050-16506-1133089FooStreaming
dnode-1.hdfs.private6.56.3 GB…5050-16506-1133088FooStreaming
dnode-4.hdfs.private1251 MB…5050-16506-1133087FooStreaming
dnode-0.hdfs.private6.46.8 GB
The only way to release the resources is by manually finding the process in
the cluster and killing it. The jobs are often streaming but also batch
jobs show this behavior. We have more streaming jobs than batch, so stats
are biased.
Any ideas of what's up here? Hopefully some very bad ugly bug that has been
fixed already and that will urge us to upgrade our infra?

Mesos 0.20 +  Marathon 0.7.4 + Spark 1.1.0

-kr, Gerard.

Reply via email to