Hi,
Everyone. I have a piece of following code. When I run it,
it occurred the error just like below, it seem that the SparkContext is not
serializable, but i do not try to use the SparkContext except the broadcast.
[In fact, this code is in the MLLib, I just try to broadcast the
centerArrays ]
it can success in the redeceBykey operation, but failed at the collect
operation, this confused me.
INFO DAGScheduler: Failed to run collect at KMeans.scala:235
[error] (run-main-0) org.apache.spark.SparkException: Job aborted: Task not
serializable: java.io.NotSerializableException:
org.apache.spark.SparkContext
org.apache.spark.SparkException: Job aborted: Task not serializable:
java.io.NotSerializableException: org.apache.spark.SparkContext
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)
private def initKMeansParallel(data: RDD[Array[Double]]):
Array[ClusterCenters] = {
@transient val sc = data.sparkContext // I try to add
the transient
annotation here, but it doesn't work
// Initialize each run's center to a random point
val seed = new XORShiftRandom().nextInt()
val sample = data.takeSample(true, runs, seed).toSeq
val centers = Array.tabulate(runs)(r => ArrayBuffer(sample(r)))
// On each step, sample 2 * k points on average for each run with
probability proportional
// to their squared distance from that run's current centers
for (step <- 0 until initializationSteps) {
val centerArrays = sc.broadcast(centers.map(_.toArray))
val sumCosts = data.flatMap { point =>
for (r <- 0 until runs) yield (r,
KMeans.pointCost(centerArrays.value(r), point))
}.reduceByKey(_ + _).collectAsMap()
//can pass at this point
val chosen = data.mapPartitionsWithIndex { (index, points) =>
val rand = new XORShiftRandom(seed ^ (step << 16) ^ index)
for {
p <- points
r <- 0 until runs
if rand.nextDouble() < KMeans.pointCost(centerArrays.value(r), p)
* 2 * k / sumCosts(r)
} yield (r, p)
}.collect()
// failed at this
point.
for ((r, p) <- chosen) {
centers(r) += p
}
}