Hi (my previous post as been used by someone else) I'm building a application the read from kafka stream event. In production we've 5 consumers that share 10 partitions. But on spark streaming kafka only 1 worker act as a consumer then distribute the tasks to workers so I can have only 1 machine acting as consumer but I need more because only 1 consumer means Lags.
Do you've any idea what I can do ? Another point is interresting the master is not loaded at all I can get up more than 10 % CPU I've tried to increase the queued.max.message.chunks on the kafka client to read more records thinking it'll speed up the read but I only get ERROR consumer.ConsumerFetcherThread: [ConsumerFetcherThread-SparkEC2_ip-10-138-59-194.ec2.internal-1410182950783-5c49c8e8-0-174167372], Error in fetch Name: FetchRequest; Version: 0; CorrelationId: 73; ClientId: SparkEC2-ConsumerFetcherThread-SparkEC2_ip-10-138-59-194.ec2.internal-1410182950783-5c49c8e8-0-174167372; ReplicaId: -1; MaxWait: 100 ms; MinBytes: 1 bytes; RequestInfo: [IA2,7] -> PartitionFetchInfo(929838589,1048576),[IA2,6] -> PartitionFetchInfo(929515796,1048576),[IA2,9] -> PartitionFetchInfo(929577946,1048576),[IA2,8] -> PartitionFetchInfo(930751599,1048576),[IA2,2] -> PartitionFetchInfo(926457704,1048576),[IA2,5] -> PartitionFetchInfo(930774385,1048576),[IA2,0] -> PartitionFetchInfo(929913213,1048576),[IA2,3] -> PartitionFetchInfo(929268891,1048576),[IA2,4] -> PartitionFetchInfo(929949877,1048576),[IA2,1] -> PartitionFetchInfo(930063114,1048576) java.lang.OutOfMemoryError: Java heap space Is someone have ideas ? Thanks -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/How-to-scale-more-consumer-to-Kafka-stream-tp13883.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org