How was the table created? Would you mind to share related code? It seems that the underlying type of the |customer_id| field is actually long, but the schema says it’s integer, basically it’s a type mismatch error.

The first query succeeds because |SchemaRDD.count()| is translated to something equivalent to |SELECT COUNT(1) FROM ...| and doesn’t actually touch the field. While in the second case, Spark tries to materialize the whole underlying table into in-memory columnar format because you asked to cache the table, thus the type mismatch is detected.

On 10/10/14 8:28 PM, poiuytrez wrote:

Hi Cheng,

I am using Spark 1.1.0.
This is the stack trace:
14/10/10 12:17:40 WARN TaskSetManager: Lost task 120.0 in stage 7.0 (TID
2235, spark-w-0.c.db.internal): java.lang.ClassCastException: java.lang.Long
cannot be cast to java.lang.Integer
         scala.runtime.BoxesRunTime.unboxToInt(BoxesRunTime.java:106)
org.apache.spark.sql.catalyst.expressions.GenericRow.getInt(Row.scala:146)
         org.apache.spark.sql.columnar.INT$.getField(ColumnType.scala:105)
         org.apache.spark.sql.columnar.INT$.getField(ColumnType.scala:92)
org.apache.spark.sql.columnar.BasicColumnBuilder.appendFrom(ColumnBuilder.scala:72) org.apache.spark.sql.columnar.NativeColumnBuilder.org$apache$spark$sql$columnar$NullableColumnBuilder$super$appendFrom(ColumnBuilder.scala:88) org.apache.spark.sql.columnar.NullableColumnBuilder$class.appendFrom(NullableColumnBuilder.scala:57) org.apache.spark.sql.columnar.NativeColumnBuilder.org$apache$spark$sql$columnar$compression$CompressibleColumnBuilder$super$appendFrom(ColumnBuilder.scala:88) org.apache.spark.sql.columnar.compression.CompressibleColumnBuilder$class.appendFrom(CompressibleColumnBuilder.scala:76) org.apache.spark.sql.columnar.NativeColumnBuilder.appendFrom(ColumnBuilder.scala:88) org.apache.spark.sql.columnar.InMemoryRelation$anonfun$1$anon$1.next(InMemoryColumnarTableScan.scala:65) org.apache.spark.sql.columnar.InMemoryRelation$anonfun$1$anon$1.next(InMemoryColumnarTableScan.scala:50) org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:236) org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:163)
         org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)
         org.apache.spark.rdd.RDD.iterator(RDD.scala:227)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
         org.apache.spark.scheduler.Task.run(Task.scala:54)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
         java.lang.Thread.run(Thread.java:745)


This was also printed on the driver:

14/10/10 12:17:43 ERROR TaskSetManager: Task 120 in stage 7.0 failed 4
times; aborting job
14/10/10 12:17:43 INFO TaskSchedulerImpl: Cancelling stage 7
14/10/10 12:17:43 INFO TaskSchedulerImpl: Stage 7 was cancelled
14/10/10 12:17:43 INFO DAGScheduler: Failed to run collect at
SparkPlan.scala:85
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
   File "/home/hadoop/spark-install/python/pyspark/sql.py", line 1606, in
count
     return self._jschema_rdd.count()
   File
"/home/hadoop/spark-install/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py",
line 538, in __call__
   File
"/home/hadoop/spark-install/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py",
line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o100.count.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task
120 in stage 7.0 failed 4 times, most recent failure: Lost task 120.3 in
stage 7.0 (TID 2248, spark-w-0.c.db.internal): java.lang.ClassCastException:

Driver stacktrace:
        at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$failJobAndIndependentStages(DAGScheduler.scala:1185)
        at
org.apache.spark.scheduler.DAGScheduler$anonfun$abortStage$1.apply(DAGScheduler.scala:1174)
        at
org.apache.spark.scheduler.DAGScheduler$anonfun$abortStage$1.apply(DAGScheduler.scala:1173)
        at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
        at
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173)
        at
org.apache.spark.scheduler.DAGScheduler$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
        at
org.apache.spark.scheduler.DAGScheduler$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
        at scala.Option.foreach(Option.scala:236)
        at
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688)
        at
org.apache.spark.scheduler.DAGSchedulerEventProcessActor$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391)
        at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
        at akka.actor.ActorCell.invoke(ActorCell.scala:456)
        at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
        at akka.dispatch.Mailbox.run(Mailbox.scala:219)
        at
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
        at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
        at
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
        at 
scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
        at
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)


Thank you



--
View this message in context: 
http://apache-spark-user-list.1001560.n3.nabble.com/Spark-SQL-Exception-only-when-using-cacheTable-tp16031p16138.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

Reply via email to