Also attaching the parquet file if anyone wants to take a further look. On Thu, Nov 20, 2014 at 8:54 AM, Sadhan Sood <sadhan.s...@gmail.com> wrote:
> So, I am seeing this issue with spark sql throwing an exception when > trying to read selective columns from a thrift parquet file and also when > caching them: > On some further digging, I was able to narrow it down to at-least one > particular column type: map<string, set<string>> to be causing this issue. > To reproduce this I created a test thrift file with a very basic schema and > stored some sample data in a parquet file: > > Test.thrift > =========== > typedef binary SomeId > > enum SomeExclusionCause { > WHITELIST = 1, > HAS_PURCHASE = 2, > } > > struct SampleThriftObject { > 10: string col_a; > 20: string col_b; > 30: string col_c; > 40: optional map<SomeExclusionCause, set<SomeId>> col_d; > } > ============= > > And loading the data in spark through schemaRDD: > > import org.apache.spark.sql.SchemaRDD > val sqlContext = new org.apache.spark.sql.SQLContext(sc); > val parquetFile = "/path/to/generated/parquet/file" > val parquetFileRDD = sqlContext.parquetFile(parquetFile) > parquetFileRDD.printSchema > root > |-- col_a: string (nullable = true) > |-- col_b: string (nullable = true) > |-- col_c: string (nullable = true) > |-- col_d: map (nullable = true) > | |-- key: string > | |-- value: array (valueContainsNull = true) > | | |-- element: string (containsNull = false) > > parquetFileRDD.registerTempTable("test") > sqlContext.cacheTable("test") > sqlContext.sql("select col_a from test").collect() <-- see the exception > stack here > > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 > in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage > 0.0 (TID 0, localhost): parquet.io.ParquetDecodingException: Can not read > value at 0 in block -1 in file file:/tmp/xyz/part-r-00000.parquet > at > parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:213) > at > parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:204) > at > org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:145) > at > org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > at scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > at scala.collection.Iterator$class.foreach(Iterator.scala:727) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) > at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) > at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) > at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) > at scala.collection.AbstractIterator.to(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) > at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) > at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) > at org.apache.spark.rdd.RDD$$anonfun$16.apply(RDD.scala:780) > at org.apache.spark.rdd.RDD$$anonfun$16.apply(RDD.scala:780) > at > org.apache.spark.SparkContext$$anonfun$runJob$3.apply(SparkContext.scala:1223) > at > org.apache.spark.SparkContext$$anonfun$runJob$3.apply(SparkContext.scala:1223) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61) > at org.apache.spark.scheduler.Task.run(Task.scala:56) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:195) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > > Caused by: java.lang.ArrayIndexOutOfBoundsException: -1 > at java.util.ArrayList.elementData(ArrayList.java:418) > at java.util.ArrayList.get(ArrayList.java:431) > at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95) > at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95) > at parquet.io.PrimitiveColumnIO.getLast(PrimitiveColumnIO.java:80) > at parquet.io.PrimitiveColumnIO.isLast(PrimitiveColumnIO.java:74) > at > parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:282) > at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:131) > at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:96) > at > parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:136) > at parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:96) > at > parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:126) > at > parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:193) > ... 27 more > > If you take out the col_d from the thrift file, the problem goes away. The > problem also shows up when trying to read the particular column without > caching the table first. The same file can be dumped/read using > parquet-tools just fine. Here is the file dump using parquet-tools: > > row group 0 > -------------------------------------------------------------------------------- > col_a: BINARY UNCOMPRESSED DO:0 FPO:4 SZ:89/89/1.00 VC:9 ENC > [more]... > col_b: BINARY UNCOMPRESSED DO:0 FPO:93 SZ:89/89/1.00 VC:9 EN > [more]... > col_c: BINARY UNCOMPRESSED DO:0 FPO:182 SZ:89/89/1.00 VC:9 E > [more]... > col_d: > .map: > ..key: BINARY UNCOMPRESSED DO:0 FPO:271 SZ:29/29/1.00 VC:9 E > [more]... > ..value: > ...value_tuple: BINARY UNCOMPRESSED DO:0 FPO:300 SZ:29/29/1.00 VC:9 E > [more]... > > col_a TV=9 RL=0 DL=1 > > ---------------------------------------------------------------------------- > page 0: DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9 > > col_b TV=9 RL=0 DL=1 > > ---------------------------------------------------------------------------- > page 0: DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9 > > col_c TV=9 RL=0 DL=1 > > ---------------------------------------------------------------------------- > page 0: DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9 > > col_d.map.key TV=9 RL=1 DL=2 > > ---------------------------------------------------------------------------- > page 0: DLE:RLE RLE:RLE VLE:PLAIN SZ:12 VC:9 > > col_d.map.value.value_tuple TV=9 RL=2 DL=4 > > ---------------------------------------------------------------------------- > page 0: DLE:RLE RLE:RLE VLE:PLAIN SZ:12 VC:9 > > BINARY col_a > -------------------------------------------------------------------------------- > *** row group 1 of 1, values 1 to 9 *** > value 1: R:1 D:1 V:a1 > value 2: R:1 D:1 V:a2 > value 3: R:1 D:1 V:a3 > value 4: R:1 D:1 V:a4 > value 5: R:1 D:1 V:a5 > value 6: R:1 D:1 V:a6 > value 7: R:1 D:1 V:a7 > value 8: R:1 D:1 V:a8 > value 9: R:1 D:1 V:a9 > > BINARY col_b > -------------------------------------------------------------------------------- > *** row group 1 of 1, values 1 to 9 *** > value 1: R:1 D:1 V:b1 > value 2: R:1 D:1 V:b2 > value 3: R:1 D:1 V:b3 > value 4: R:1 D:1 V:b4 > value 5: R:1 D:1 V:b5 > value 6: R:1 D:1 V:b6 > value 7: R:1 D:1 V:b7 > value 8: R:1 D:1 V:b8 > value 9: R:1 D:1 V:b9 > > BINARY col_c > -------------------------------------------------------------------------------- > *** row group 1 of 1, values 1 to 9 *** > value 1: R:1 D:1 V:c1 > value 2: R:1 D:1 V:c2 > value 3: R:1 D:1 V:c3 > value 4: R:1 D:1 V:c4 > value 5: R:1 D:1 V:c5 > value 6: R:1 D:1 V:c6 > value 7: R:1 D:1 V:c7 > value 8: R:1 D:1 V:c8 > value 9: R:1 D:1 V:c9 > > BINARY col_d.map.key > -------------------------------------------------------------------------------- > *** row group 1 of 1, values 1 to 9 *** > value 1: R:0 D:0 V:<null> > value 2: R:0 D:0 V:<null> > value 3: R:0 D:0 V:<null> > value 4: R:0 D:0 V:<null> > value 5: R:0 D:0 V:<null> > value 6: R:0 D:0 V:<null> > value 7: R:0 D:0 V:<null> > value 8: R:0 D:0 V:<null> > value 9: R:0 D:0 V:<null> > > BINARY col_d.map.value.value_tuple > -------------------------------------------------------------------------------- > *** row group 1 of 1, values 1 to 9 *** > value 1: R:0 D:0 V:<null> > value 2: R:0 D:0 V:<null> > value 3: R:0 D:0 V:<null> > value 4: R:0 D:0 V:<null> > value 5: R:0 D:0 V:<null> > value 6: R:0 D:0 V:<null> > value 7: R:0 D:0 V:<null> > value 8: R:0 D:0 V:<null> > value 9: R:0 D:0 V:<null> > > > I am happy to provide more information but any help is appreciated. > > > On Sun, Nov 16, 2014 at 7:40 PM, Sadhan Sood <sadhan.s...@gmail.com> > wrote: > >> Hi Cheng, >> >> I tried reading the parquet file(on which we were getting the exception) >> through parquet-tools and it is able to dump the file and I can read the >> metadata, etc. I also loaded the file through hive table and can run a >> table scan query on it as well. Let me know if I can do more to help >> resolve the problem, I'll run it through a debugger and see if I can get >> more information on it in the meantime. >> >> Thanks, >> Sadhan >> >> On Sun, Nov 16, 2014 at 4:35 AM, Cheng Lian <lian.cs....@gmail.com> >> wrote: >> >>> (Forgot to cc user mail list) >>> >>> >>> On 11/16/14 4:59 PM, Cheng Lian wrote: >>> >>> Hey Sadhan, >>> >>> Thanks for the additional information, this is helpful. Seems that >>> some Parquet internal contract was broken, but I'm not sure whether it's >>> caused by Spark SQL or Parquet, or even maybe the Parquet file itself was >>> damaged somehow. I'm investigating this. In the meanwhile, would you mind >>> to help to narrow down the problem by trying to scan exactly the same >>> Parquet file with some other systems (e.g. Hive or Impala)? If other >>> systems work, then there must be something wrong with Spark SQL. >>> >>> Cheng >>> >>> On Sun, Nov 16, 2014 at 1:19 PM, Sadhan Sood <sadhan.s...@gmail.com> >>> wrote: >>> >>>> Hi Cheng, >>>> >>>> Thanks for your response. Here is the stack trace from yarn logs: >>>> >>>> Caused by: java.lang.ArrayIndexOutOfBoundsException: -1 >>>> at java.util.ArrayList.elementData(ArrayList.java:418) >>>> at java.util.ArrayList.get(ArrayList.java:431) >>>> at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95) >>>> at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95) >>>> at parquet.io.PrimitiveColumnIO.getLast(PrimitiveColumnIO.java:80) >>>> at parquet.io.PrimitiveColumnIO.isLast(PrimitiveColumnIO.java:74) >>>> at >>>> parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:282) >>>> at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:131) >>>> at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:96) >>>> at >>>> parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:136) >>>> at >>>> parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:96) >>>> at >>>> parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:126) >>>> at >>>> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:193) >>>> ... 26 more >>>> >>>> >>>> On Sat, Nov 15, 2014 at 9:28 AM, Cheng Lian <lian.cs....@gmail.com> >>>> wrote: >>>> >>>>> Hi Sadhan, >>>>> >>>>> Could you please provide the stack trace of the >>>>> ArrayIndexOutOfBoundsException (if any)? The reason why the first >>>>> query succeeds is that Spark SQL doesn’t bother reading all data from the >>>>> table to give COUNT(*). In the second case, however, the whole table >>>>> is asked to be cached lazily via the cacheTable call, thus it’s >>>>> scanned to build the in-memory columnar cache. Then thing went wrong while >>>>> scanning this LZO compressed Parquet file. But unfortunately the stack >>>>> trace at hand doesn’t indicate the root cause. >>>>> >>>>> Cheng >>>>> >>>>> On 11/15/14 5:28 AM, Sadhan Sood wrote: >>>>> >>>>> While testing SparkSQL on a bunch of parquet files (basically used to >>>>> be a partition for one of our hive tables), I encountered this error: >>>>> >>>>> import org.apache.spark.sql.SchemaRDD >>>>> import org.apache.hadoop.fs.FileSystem; >>>>> import org.apache.hadoop.conf.Configuration; >>>>> import org.apache.hadoop.fs.Path; >>>>> >>>>> val sqlContext = new org.apache.spark.sql.SQLContext(sc) >>>>> >>>>> val parquetFileRDD = sqlContext.parquetFile(parquetFile) >>>>> parquetFileRDD.registerTempTable("xyz_20141109") >>>>> sqlContext.sql("SELECT count(*) FROM xyz_20141109").collect() <-- >>>>> works fine >>>>> sqlContext.cacheTable("xyz_20141109") >>>>> sqlContext.sql("SELECT count(*) FROM xyz_20141109").collect() <-- >>>>> fails with an exception >>>>> >>>>> parquet.io.ParquetDecodingException: Can not read value at 0 in >>>>> block -1 in file >>>>> hdfs://xxxxxxxx::9000/event_logs/xyz/20141109/part-00009359b87ae-a949-3ded-ac3e-3a6bda3a4f3a-r-00009.lzo.parquet >>>>> >>>>> at >>>>> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:213) >>>>> >>>>> at >>>>> parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:204) >>>>> >>>>> at >>>>> org.apache.spark.rdd.NewHadoopRDD$anon$1.hasNext(NewHadoopRDD.scala:145) >>>>> >>>>> at >>>>> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) >>>>> >>>>> at >>>>> scala.collection.Iterator$anon$11.hasNext(Iterator.scala:327) >>>>> >>>>> at >>>>> scala.collection.Iterator$anon$14.hasNext(Iterator.scala:388) >>>>> >>>>> at >>>>> org.apache.spark.sql.columnar.InMemoryRelation$anonfun$3$anon$1.hasNext(InMemoryColumnarTableScan.scala:136) >>>>> >>>>> at >>>>> org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:248) >>>>> >>>>> at >>>>> org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:163) >>>>> >>>>> at >>>>> org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70) >>>>> >>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:228) >>>>> >>>>> at >>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) >>>>> >>>>> at >>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263) >>>>> >>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:230) >>>>> >>>>> at >>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) >>>>> >>>>> at >>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263) >>>>> >>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:230) >>>>> >>>>> at >>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) >>>>> >>>>> at >>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263) >>>>> >>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:230) >>>>> >>>>> at >>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) >>>>> >>>>> at >>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) >>>>> >>>>> at org.apache.spark.scheduler.Task.run(Task.scala:56) >>>>> >>>>> at >>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:195) >>>>> >>>>> at >>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>>>> >>>>> at >>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>>>> >>>>> at java.lang.Thread.run(Thread.java:745) >>>>> >>>>> Caused by: java.lang.ArrayIndexOutOfBoundsException >>>>> >>>>> >>>>> >>>> >>>> >>> >>> >> >
part-r-00000.parquet
Description: Binary data
--------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org