I have a feeling I’m missing a Jar that provides the support or could this may be related to https://issues.apache.org/jira/browse/SPARK-5792. If it is a Jar where would I find that ? I would have thought in the $HIVE/lib folder, but not sure which jar contains it.
Error: Create Metric Temporary Table for querying15/04/01 14:41:44 INFO HiveMetaStore: 0: Opening raw store with implemenation class:org.apache.hadoop.hive.metastore.ObjectStore15/04/01 14:41:44 INFO ObjectStore: ObjectStore, initialize called15/04/01 14:41:45 INFO Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will be ignored15/04/01 14:41:45 INFO Persistence: Property datanucleus.cache.level2 unknown - will be ignored15/04/01 14:41:45 INFO BlockManager: Removing broadcast 015/04/01 14:41:45 INFO BlockManager: Removing block broadcast_015/04/01 14:41:45 INFO MemoryStore: Block broadcast_0 of size 1272 dropped from memory (free 278018571)15/04/01 14:41:45 INFO BlockManager: Removing block broadcast_0_piece015/04/01 14:41:45 INFO MemoryStore: Block broadcast_0_piece0 of size 869 dropped from memory (free 278019440)15/04/01 14:41:45 INFO BlockManagerInfo: Removed broadcast_0_piece0 on 192.168.1.5:63230 in memory (size: 869.0 B, free: 265.1 MB)15/04/01 14:41:45 INFO BlockManagerMaster: Updated info of block broadcast_0_piece015/04/01 14:41:45 INFO BlockManagerInfo: Removed broadcast_0_piece0 on 192.168.1.5:63278 in memory (size: 869.0 B, free: 530.0 MB)15/04/01 14:41:45 INFO ContextCleaner: Cleaned broadcast 015/04/01 14:41:46 INFO ObjectStore: Setting MetaStore object pin classes with hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"15/04/01 14:41:46 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table.15/04/01 14:41:46 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table.15/04/01 14:41:47 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table.15/04/01 14:41:47 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table.15/04/01 14:41:47 INFO Query: Reading in results for query "org.datanucleus.store.rdbms.query.SQLQuery@0" since the connection used is closing15/04/01 14:41:47 INFO ObjectStore: Initialized ObjectStore15/04/01 14:41:47 INFO HiveMetaStore: Added admin role in metastore15/04/01 14:41:47 INFO HiveMetaStore: Added public role in metastore15/04/01 14:41:48 INFO HiveMetaStore: No user is added in admin role, since config is empty15/04/01 14:41:48 INFO SessionState: No Tez session required at this point. hive.execution.engine=mr.15/04/01 14:41:49 INFO ParseDriver: Parsing command: SELECT path, name, value, v1.peValue, v1.peName FROM metric lateral view json_tuple(pathElements, 'name', 'value') v1 as peName, peValue15/04/01 14:41:49 INFO ParseDriver: Parse CompletedException in thread "main" java.lang.ClassNotFoundException: json_tuple at java.net.URLClassLoader$1.run(URLClassLoader.java:372) at java.net.URLClassLoader$1.run(URLClassLoader.java:361) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:360) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) at org.apache.spark.sql.hive.HiveFunctionWrapper.createFunction(Shim13.scala:141) at org.apache.spark.sql.hive.HiveGenericUdtf.function$lzycompute(hiveUdfs.scala:261) at org.apache.spark.sql.hive.HiveGenericUdtf.function(hiveUdfs.scala:261) at org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector$lzycompute(hiveUdfs.scala:267) at org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector(hiveUdfs.scala:267) at org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes$lzycompute(hiveUdfs.scala:272) at org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes(hiveUdfs.scala:272) at org.apache.spark.sql.hive.HiveGenericUdtf.makeOutput(hiveUdfs.scala:278) at org.apache.spark.sql.catalyst.expressions.Generator.output(generators.scala:60) at org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50) at org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50) at scala.Option.map(Option.scala:145) at org.apache.spark.sql.catalyst.plans.logical.Generate.generatorOutput(basicOperators.scala:50) at org.apache.spark.sql.catalyst.plans.logical.Generate.output(basicOperators.scala:60) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118) at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251) at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251) at scala.collection.immutable.List.foreach(List.scala:318) at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251) at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:118) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:159) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:156) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144) at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:71) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1$$anonfun$apply$1.apply(QueryPlan.scala:85) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at scala.collection.AbstractTraversable.map(Traversable.scala:105) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:84) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) at scala.collection.AbstractIterator.to(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:89) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:60) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:156) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:153) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:206) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:153) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:152) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59) at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111) at scala.collection.immutable.List.foldLeft(List.scala:84) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51) at scala.collection.immutable.List.foreach(List.scala:318) at org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51) at org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411) at org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411) at org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412) at org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412) at org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413) at org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413) at org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418) at org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416) at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422) at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422) at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444) at com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite$.main(ElasticSearchReadWrite.scala:119) at com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite.main(ElasticSearchReadWrite.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:483) at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Json: "metric": { "path": "/PA/Pittsburgh/12345 Westbrook Drive/main/theromostat-1", "pathElements": [ { "node": "State", "value": "PA" }, { "node": "City", "value": "Pittsburgh" }, { "node": "Street", "value": "12345 Westbrook Drive" }, { "node": "level", "value": "main" }, { "node": "device", "value": "thermostat" } ], "name": "Current Temperature", "value": 29.590943279257175, "timestamp": "2015-03-27T14:53:46+0000" } Here is the code that produces the error: // Spark importsimport org.apache.spark.{SparkConf, SparkContext}import org.apache.spark.SparkContext._ import org.apache.spark.rdd.RDD import org.apache.spark.sql.{SchemaRDD,SQLContext}import org.apache.spark.sql.hive._ // ES importsimport org.elasticsearch.spark._import org.elasticsearch.spark.sql._ def main(args: Array[String]) { val sc = sparkInit @transient val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc) import hiveContext._ val start = System.currentTimeMillis() /* * Read from ES and provide some insights with SparkSQL */ val esData = sc.esRDD(s"${ElasticSearch.Index}/${ElasticSearch.Type}") esData.collect.foreach(println(_)) val end = System.currentTimeMillis() println(s"Total time: ${end-start} ms") println("Create Metric Temporary Table for querying") val schemaRDD = hiveContext.sql( "CREATE TEMPORARY TABLE metric " + "USING org.elasticsearch.spark.sql " + "OPTIONS (resource 'device/metric')" ) hiveContext.sql( """SELECT path, name, value, v1.peValue, v1.peName FROM metric lateral view json_tuple(pathElements, 'name', 'value') v1 as peName, peValue """) .collect.foreach(println(_)) } } More than likely I’m missing a jar, but not sure what that would be. -Todd