You could try increasing your heap space explicitly. like export
_JAVA_OPTIONS="-Xmx10g", its not the correct approach but try.

Thanks
Best Regards

On Tue, Apr 28, 2015 at 10:35 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> wrote:

> I have a SparkApp that runs completes in 45 mins for 5 files (5*750MB
> size) and it takes 16 executors to do so.
>
> I wanted to run it against 10 files of each input type (10*3 files as
> there are three inputs that are transformed). [Input1 = 10*750 MB,
> Input2=10*2.5GB, Input3 = 10*1.5G], Hence i used 32 executors.
>
> I see multiple
> 5/04/28 09:23:31 WARN executor.Executor: Issue communicating with driver
> in heartbeater
> org.apache.spark.SparkException: Error sending message [message =
> Heartbeat(22,[Lscala.Tuple2;@2e4c404a,BlockManagerId(22,
> phxaishdc9dn1048.stratus.phx.ebay.com, 39505))]
> at org.apache.spark.util.AkkaUtils$.askWithReply(AkkaUtils.scala:209)
> at org.apache.spark.executor.Executor$$anon$1.run(Executor.scala:427)
> Caused by: java.util.concurrent.TimeoutException: Futures timed out after
> [30 seconds]
> at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
> at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
> at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
> at
> scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
> at scala.concurrent.Await$.result(package.scala:107)
> at org.apache.spark.util.AkkaUtils$.askWithReply(AkkaUtils.scala:195)
> ... 1 more
>
>
> When i searched deeper, i found OOM error.
> 15/04/28 09:10:15 INFO storage.BlockManagerMasterActor: Removing block
> manager BlockManagerId(17, phxdpehdc9dn2643.stratus.phx.ebay.com, 36819)
> 15/04/28 09:11:26 WARN storage.BlockManagerMasterActor: Removing
> BlockManager BlockManagerId(9, phxaishdc9dn1783.stratus.phx.ebay.com,
> 48304) with no recent heart beats: 121200ms exceeds 120000ms
> 15/04/28 09:11:26 INFO storage.BlockManagerMasterActor: Removing block
> manager BlockManagerId(9, phxaishdc9dn1783.stratus.phx.ebay.com, 48304)
> 15/04/28 09:11:26 ERROR util.Utils: Uncaught exception in thread
> task-result-getter-3
> java.lang.OutOfMemoryError: Java heap space
> at java.util.Arrays.copyOf(Arrays.java:2245)
> at java.util.Arrays.copyOf(Arrays.java:2219)
> at java.util.ArrayList.grow(ArrayList.java:242)
> at java.util.ArrayList.ensureExplicitCapacity(ArrayList.java:216)
> at java.util.ArrayList.ensureCapacityInternal(ArrayList.java:208)
> at java.util.ArrayList.add(ArrayList.java:440)
> at
> com.esotericsoftware.kryo.util.MapReferenceResolver.nextReadId(MapReferenceResolver.java:33)
> at com.esotericsoftware.kryo.Kryo.readReferenceOrNull(Kryo.java:766)
> at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:727)
> at
> com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ObjectArraySerializer.read(DefaultArraySerializers.java:338)
> at
> com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ObjectArraySerializer.read(DefaultArraySerializers.java:293)
> at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:729)
> at
> org.apache.spark.serializer.KryoSerializerInstance.deserialize(KryoSerializer.scala:173)
> at org.apache.spark.scheduler.DirectTaskResult.value(TaskResult.scala:79)
> at
> org.apache.spark.scheduler.TaskSetManager.handleSuccessfulTask(TaskSetManager.scala:621)
> at
> org.apache.spark.scheduler.TaskSchedulerImpl.handleSuccessfulTask(TaskSchedulerImpl.scala:379)
> at
> org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply$mcV$sp(TaskResultGetter.scala:82)
> at
> org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply(TaskResultGetter.scala:51)
> at
> org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply(TaskResultGetter.scala:51)
> at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1618)
> at
> org.apache.spark.scheduler.TaskResultGetter$$anon$2.run(TaskResultGetter.scala:50)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> at java.lang.Thread.run(Thread.java:745)
> Exception in thread "task-result-getter-3" java.lang.OutOfMemoryError:
> Java heap space
> at java.util.Arrays.copyOf(Arrays.java:2245)
> at java.util.Arrays.copyOf(Arrays.java:2219)
> at java.util.ArrayList.grow(ArrayList.java:242)
> at java.util.ArrayList.ensureExplicitCapacity(ArrayList.java:216)
> at java.util.ArrayList.ensureCapacityInternal(ArrayList.java:208)
> at java.util.ArrayList.add(ArrayList.java:440)
> at
> com.esotericsoftware.kryo.util.MapReferenceResolver.nextReadId(MapReferenceResolver.java:33)
> at com.esotericsoftware.kryo.Kryo.readReferenceOrNull(Kryo.java:766)
> at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:727)
> at
> com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ObjectArraySerializer.read(DefaultArraySerializers.java:338)
> at
> com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ObjectArraySerializer.read(DefaultArraySerializers.java:293)
> at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:729)
> at
> org.apache.spark.serializer.KryoSerializerInstance.deserialize(KryoSerializer.scala:173)
> at org.apache.spark.scheduler.DirectTaskResult.value(TaskResult.scala:79)
> at
> org.apache.spark.scheduler.TaskSetManager.handleSuccessfulTask(TaskSetManager.scala:621)
> at
> org.apache.spark.scheduler.TaskSchedulerImpl.handleSuccessfulTask(TaskSchedulerImpl.scala:379)
> at
> org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply$mcV$sp(TaskResultGetter.scala:82)
> at
> org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply(TaskResultGetter.scala:51)
> at
> org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply(TaskResultGetter.scala:51)
> at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1618)
> at
> org.apache.spark.scheduler.TaskResultGetter$$anon$2.run(TaskResultGetter.scala:50)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> at java.lang.Thread.run(Thread.java:745)
>
> LogType: stdout
> LogLength: 96
> Log Contents:
>
> hdfs://hostName:8020/sys/edw/dw_lstg_item/snapshot/2015/04/28/00/part-r-0000*
>
>
> Spark Command:
>
> ./bin/spark-submit -v --master yarn-cluster --driver-class-path
> /apache/hadoop/share/hadoop/common/hadoop-common-2.4.1-EBAY-2.jar:/apache/hadoop/lib/hadoop-lzo-0.6.0.jar:/apache/hadoop-2.4.1-2.1.3.0-2-EBAY/share/hadoop/yarn/lib/guava-11.0.2.jar:/apache/hadoop-2.4.1-2.1.3.0-2-EBAY/share/hadoop/hdfs/hadoop-hdfs-2.4.1-EBAY-2.jar
> --jars
> /apache/hadoop-2.4.1-2.1.3.0-2-EBAY/share/hadoop/hdfs/hadoop-hdfs-2.4.1-EBAY-2.jar,/home/dvasthimal/spark1.3/1.3.1.lib/spark_reporting_dep_only-1.0-SNAPSHOT-jar-with-dependencies.jar
> --num-executors 32 --driver-memory 12g --driver-java-options
> "-XX:MaxPermSize=8G" --executor-memory 12g --executor-cores 4 --queue
> hdmi-express --class com.ebay.ep.poc.spark.reporting.SparkApp
> /home/dvasthimal/spark1.3/1.3.1.lib/spark_reporting-1.0-SNAPSHOT.jar
> startDate=2015-04-6 endDate=2015-04-7
> input=/user/dvasthimal/epdatasets_small/exptsession subcommand=viewItem
> output=/user/dvasthimal/epdatasets/viewItem buffersize=128
> maxbuffersize=1068 maxResultSize=200G askTimeout=1200
>
>
>
> There is 12G limit on memory that i can use as this Spark is running over
> YARN.
>
> Spark Version: 1.3.1
> Should i increase the number of executors form 32?
> --
> Deepak
>
>

Reply via email to