Akhil Das:

Thanks for your reply. I am using exactly the same installation everywhere.
Actually, the spark directory is shared among all nodes, including the
place where I start pyspark. So, I believe this is not the problem.

Regards,
Eduardo

On Mon, Jul 13, 2015 at 3:56 AM, Akhil Das <ak...@sigmoidanalytics.com>
wrote:

> Just make sure you are having the same installation of
> spark-1.4.0-bin-hadoop2.6 everywhere. (including the slaves, master, and
> from where you start the spark-shell).
>
> Thanks
> Best Regards
>
> On Mon, Jul 13, 2015 at 4:34 AM, Eduardo <erocha....@gmail.com> wrote:
>
>> My installation of spark is not working correctly in my local cluster. I
>> downloaded spark-1.4.0-bin-hadoop2.6.tgz and untar it in a directory
>> visible to all nodes (these nodes are all accessible by ssh without
>> password). In addition, I edited conf/slaves so that it contains the names
>> of the nodes. Then I issued a sbin/start-all.sh . The Web UI in the master
>> became available and the nodes appeared in the workers sections. However,
>> if a start a pyspark section (connecting to the master using the URL that
>> appeared in the Web UI), and try to run this simple example:
>>
>> a=sc.parallelize([0,1,2,3],2)
>> a.collect()
>>
>> I get this error:
>>
>> 15/07/12 19:52:58 ERROR TaskSetManager: Task 1 in stage 0.0 failed 4 times; 
>> aborting job
>> Traceback (most recent call last):
>>   File "<stdin>", line 1, in <module>
>>   File "/home/myuser/spark-1.4.0-bin-hadoop2.6/python/pyspark/rdd.py", line 
>> 745, in collect
>>     port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
>>   File 
>> "/home/myuser/spark-1.4.0-bin-hadoop2.6/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py",
>>  line 538, in __call__
>>   File 
>> "/home/myuser/spark-1.4.0-bin-hadoop2.6/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py",
>>  line 300, in get_return_value
>> py4j.protocol.Py4JJavaError: An error occurred while calling 
>> z:org.apache.spark.api.python.PythonRDD.collectAndServe.
>> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 
>> in stage 0.0 failed 4 times, most recent failure: Lost task 1.3 in stage 0.0 
>> (TID 6, 172.16.1.1): java.io.InvalidClassException: 
>> scala.reflect.ClassTag$$anon$1; local class incompatible: stream classdesc 
>> serialVersionUID = -4937928798201944954, local class serialVersionUID = 
>> -8102093212602380348
>>     at java.io.ObjectStreamClass.initNonProxy(ObjectStreamClass.java:604)
>>     at 
>> java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1601)
>>     at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1514)
>>     at 
>> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1750)
>>     at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1347)
>>     at 
>> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1964)
>>     at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1888)
>>     at 
>> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1771)
>>     at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1347)
>>     at 
>> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1964)
>>     at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1888)
>>     at 
>> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1771)
>>     at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1347)
>>     at java.io.ObjectInputStream.readObject(ObjectInputStream.java:369)
>>     at 
>> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:69)
>>     at 
>> org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:95)
>>     at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:194)
>>     at 
>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110)
>>     at 
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603)
>>     at java.lang.Thread.run(Thread.java:722)
>>
>> Driver stacktrace:
>>     at 
>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1266)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1257)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1256)
>>     at 
>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1256)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>>     at scala.Option.foreach(Option.scala:236)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730)
>>     at 
>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1450)
>>     at 
>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1411)
>>     at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>
>> Has anyone experienced this issue? Thanks in advance.
>>
>
>

Reply via email to