Yeah, in the function you supply for the messageHandler parameter to createDirectStream, catch the exception and do whatever makes sense for your application.
On Mon, Jul 20, 2015 at 11:58 AM, Nicolas Phung <nicolas.ph...@gmail.com> wrote: > Hello, > > Using the old Spark Streaming Kafka API, I got the following around the > same offset: > > kafka.message.InvalidMessageException: Message is corrupt (stored crc = > 3561357254, computed crc = 171652633) > at kafka.message.Message.ensureValid(Message.scala:166) > at > kafka.consumer.ConsumerIterator.makeNext(ConsumerIterator.scala:102) > at > kafka.consumer.ConsumerIterator.makeNext(ConsumerIterator.scala:33) > at > kafka.utils.IteratorTemplate.maybeComputeNext(IteratorTemplate.scala:66) > at kafka.utils.IteratorTemplate.hasNext(IteratorTemplate.scala:58) > at > org.apache.spark.streaming.kafka.ReliableKafkaReceiver$MessageHandler.run(ReliableKafkaReceiver.scala:265) > at > java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > 15/07/20 15:56:57 INFO BlockManager: Removing broadcast 4641 > 15/07/20 15:56:57 ERROR ReliableKafkaReceiver: Error handling message > java.lang.IllegalStateException: Iterator is in failed state > at kafka.utils.IteratorTemplate.hasNext(IteratorTemplate.scala:54) > at > org.apache.spark.streaming.kafka.ReliableKafkaReceiver$MessageHandler.run(ReliableKafkaReceiver.scala:265) > at > java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > > I found some old topic about some possible corrupt Kafka message produced > by the new producer API with Snappy compression on. My question is, is it > possible to skip/ignore those offsets when full processing with > KafkaUtils.createStream > or KafkaUtils.createDirectStream ? > > Regards, > Nicolas PHUNG > > On Mon, Jul 20, 2015 at 3:46 PM, Cody Koeninger <c...@koeninger.org> > wrote: > >> I'd try logging the offsets for each message, see where problems start, >> then try using the console consumer starting at those offsets and see if >> you can reproduce the problem. >> >> On Mon, Jul 20, 2015 at 2:15 AM, Nicolas Phung <nicolas.ph...@gmail.com> >> wrote: >> >>> Hi Cody, >>> >>> Thanks for you help. It seems there's something wrong with some messages >>> within my Kafka topics then. I don't understand how, I can get bigger or >>> incomplete message since I use default configuration to accept only 1Mb >>> message in my Kafka topic. If you have any others informations or >>> suggestions, please tell me. >>> >>> Regards, >>> Nicolas PHUNG >>> >>> On Thu, Jul 16, 2015 at 7:08 PM, Cody Koeninger <c...@koeninger.org> >>> wrote: >>> >>>> Not exactly the same issue, but possibly related: >>>> >>>> https://issues.apache.org/jira/browse/KAFKA-1196 >>>> >>>> On Thu, Jul 16, 2015 at 12:03 PM, Cody Koeninger <c...@koeninger.org> >>>> wrote: >>>> >>>>> Well, working backwards down the stack trace... >>>>> >>>>> at java.nio.Buffer.limit(Buffer.java:275) >>>>> >>>>> That exception gets thrown if the limit is negative or greater than the >>>>> buffer's capacity >>>>> >>>>> >>>>> at kafka.message.Message.sliceDelimited(Message.scala:236) >>>>> >>>>> If size had been negative, it would have just returned null, so we >>>>> know the exception got thrown because the size was greater than the >>>>> buffer's capacity >>>>> >>>>> >>>>> I haven't seen that before... maybe a corrupted message of some kind? >>>>> >>>>> If that problem is reproducible, try providing an explicit argument >>>>> for messageHandler, with a function that logs the message offset. >>>>> >>>>> >>>>> On Thu, Jul 16, 2015 at 11:28 AM, Nicolas Phung < >>>>> nicolas.ph...@gmail.com> wrote: >>>>> >>>>>> Hello, >>>>>> >>>>>> When I'm reprocessing the data from kafka (about 40 Gb) with the new >>>>>> Spark Streaming Kafka method createDirectStream, everything is fine till >>>>>> a driver error happened (driver is killed, connection lost...). When the >>>>>> driver pops up again, it resumes the processing with the checkpoint in >>>>>> HDFS. Except, I got this: >>>>>> >>>>>> 15/07/16 15:23:41 ERROR TaskSetManager: Task 4 in stage 4.0 failed 4 >>>>>> times; aborting job >>>>>> 15/07/16 15:23:41 ERROR JobScheduler: Error running job streaming job >>>>>> 1437032118000 ms.0 >>>>>> org.apache.spark.SparkException: Job aborted due to stage failure: Task >>>>>> 4 in stage 4.0 failed 4 times, most recent failure: Lost task 4.3 in >>>>>> stage 4.0 (TID 16, slave05.local): java.lang.IllegalArgumentException >>>>>> at java.nio.Buffer.limit(Buffer.java:275) >>>>>> at kafka.message.Message.sliceDelimited(Message.scala:236) >>>>>> at kafka.message.Message.payload(Message.scala:218) >>>>>> at kafka.message.MessageAndMetadata.message(MessageAndMetadata.scala:32) >>>>>> at >>>>>> org.apache.spark.streaming.kafka.KafkaUtils$$anonfun$6.apply(KafkaUtils.scala:395) >>>>>> at >>>>>> org.apache.spark.streaming.kafka.KafkaUtils$$anonfun$6.apply(KafkaUtils.scala:395) >>>>>> at >>>>>> org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator.getNext(KafkaRDD.scala:176) >>>>>> at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:71) >>>>>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >>>>>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >>>>>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >>>>>> at >>>>>> org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:248) >>>>>> at >>>>>> org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:172) >>>>>> at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:79) >>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:242) >>>>>> at >>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) >>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) >>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) >>>>>> at >>>>>> org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:93) >>>>>> at >>>>>> org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:92) >>>>>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) >>>>>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >>>>>> at org.elasticsearch.spark.rdd.EsRDDWriter.write(EsRDDWriter.scala:48) >>>>>> at >>>>>> org.elasticsearch.spark.rdd.EsSpark$$anonfun$saveToEs$1.apply(EsSpark.scala:67) >>>>>> at >>>>>> org.elasticsearch.spark.rdd.EsSpark$$anonfun$saveToEs$1.apply(EsSpark.scala:67) >>>>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61) >>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:64) >>>>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203) >>>>>> at >>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>>>>> at >>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>>>>> at java.lang.Thread.run(Thread.java:745) >>>>>> >>>>>> This is happening only when I'm doing a full data processing from >>>>>> Kafka. If there's no load, when you killed the driver and then restart, >>>>>> it >>>>>> resumes the checkpoint as expected without missing data. Did someone >>>>>> encounters something similar ? How did you solve this ? >>>>>> >>>>>> Regards, >>>>>> >>>>>> Nicolas PHUNG >>>>>> >>>>> >>>>> >>>> >>> >> >