That seem to be working. however i see a new exception Code: def formatStringAsDate(dateStr: String) = new SimpleDateFormat("yyyy-MM-dd").parse(dateStr)
//(2015-07-27,12459,,31242,6,Daily,-999,2099-01-01,2099-01-02,1,0,0.1,0,1,-1,isGeo,,,204,694.0,1.9236856708701322E-4,0.0,-4.48,0.0,0.0,0.0,) val rowStructText = sc.textFile("/user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz") case class Summary(f1: Date, f2: Long, f3: Long, f4: Integer, f5 : String, f6: Integer, f7 : Date, f8: Date, f9: Integer, f10: Integer, f11: Float, f12: Integer, f13: Integer, f14: String) val summary = rowStructText.map(s => s.split(",")).map( s => Summary(formatStringAsDate(s(0)), s(1).replaceAll("\"", "").toLong, s(3).replaceAll("\"", "").toLong, s(4).replaceAll("\"", "").toInt, s(5).replaceAll("\"", ""), s(6).replaceAll("\"", "").toInt, formatStringAsDate(s(7)), formatStringAsDate(s(8)), s(9).replaceAll("\"", "").toInt, s(10).replaceAll("\"", "").toInt, s(11).replaceAll("\"", "").toFloat, s(12).replaceAll("\"", "").toInt, s(13).replaceAll("\"", "").toInt, s(14).replaceAll("\"", "") ) ).toDF() bank.registerTempTable("summary") //Output import java.text.SimpleDateFormat import java.util.Calendar import java.util.Date formatStringAsDate: (dateStr: String)java.util.Date rowStructText: org.apache.spark.rdd.RDD[String] = /user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz MapPartitionsRDD[105] at textFile at <console>:60 defined class Summary x: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[106] at map at <console>:61 java.lang.UnsupportedOperationException: Schema for type java.util.Date is not supported at org.apache.spark.sql.catalyst.ScalaReflection$class.schemaFor(ScalaReflection.scala:188) at org.apache.spark.sql.catalyst.ScalaReflection$.schemaFor(ScalaReflection.scala:30) at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$schemaFor$1.apply(ScalaReflection.scala:164) Any suggestions On Wed, Aug 5, 2015 at 8:18 PM, Philip Weaver <philip.wea...@gmail.com> wrote: > The parallelize method does not read the contents of a file. It simply > takes a collection and distributes it to the cluster. In this case, the > String is a collection 67 characters. > > Use sc.textFile instead of sc.parallelize, and it should work as you want. > > On Wed, Aug 5, 2015 at 8:12 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> wrote: > >> I have csv data that is embedded in gzip format on HDFS. >> >> *With Pig* >> >> a = load >> '/user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz' using >> PigStorage(); >> >> b = limit a 10 >> >> >> (2015-07-27,12459,,31243,6,Daily,-999,2099-01-01,2099-01-02,4,0,0.1,0,1,,,,,203,4810370.0,1.4090459061723766,1.017458,-0.03,-0.11,0.05,0.468666,) >> >> >> (2015-07-27,12459,,31241,6,Daily,-999,2099-01-01,2099-01-02,4,0,0.1,0,1,0,isGeo,,,203,7937613.0,1.1624841995932425,1.11562,-0.06,-0.15,0.03,0.233283,) >> >> >> However with Spark >> >> val rowStructText = >> sc.parallelize("/user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00000.gz") >> >> val x = rowStructText.map(s => { >> >> println(s) >> >> s} >> >> ) >> >> x.count >> >> Questions >> >> 1) x.count always shows 67 irrespective of the path i change in >> sc.parallelize >> >> 2) It shows x as RDD[Char] instead of String >> >> 3) println() never emits the rows. >> >> Any suggestions >> >> -Deepak >> >> >> >> -- >> Deepak >> >> > -- Deepak